Cloud Computing & Transaction Cost
TJTSE50 Case analysis
Lindfors Sini, Rehunen Silja and Ylikotila Taavi
1. Introduction to Cloud Computing
2. Basics of the Transaction Cost Theory
3. Cloud Computing & Transaction Cost
4. Cases / Examples
5. Conclusion
References
1. Introduction to Cloud Computing

- A large-scale distributed computing paradigm
- Different?
 1. massively scalable
 2. can be encapsulated as an abstract entity
 3. driven by economies of scale
 4. the services can be dynamically configured & delivered on demand
- Popular?
 1. decrease in hardware cost, increase in computing power
 2. exponentially growing data size
 3. the wide-spread adoption of Service computing and Web 2.0
 (Foster et.al, 2008)
2. Basics of the Transaction Cost Theory

- A framework to evaluate: in-house or outsource?
 - Production vs. transaction cost
 - Internal & external transaction costs
 - IT -> transaction costs have dramatically decreased
 - But contract negotiation & regulation -> transaction costs may increase (Pei et al. 2008)
 - internal transaction cost > external transaction cost
 -> outsourcing (based on TC analysis)

- Underlying assumptions:
 - Firms seek to minimize economic transaction costs
 - Bounded rationality & opportunism
 - Information asymmetry (Auber et al. 2004)
2. Basics of the Transaction Cost Theory

- Transactions costs are determined by (Liu et al. 2008):
 1. Asset specify
 2. Uncertainty
 3. Frequency of occurrence

- IT asset specificity, IT asset uncertainty and internal IT capability -> the scope of IS outsourcing (Pei et al. 2008)
 - If low IT asset specificity and low IT asset uncertainty -> IT outsourcing should be considered?
 - If high IT asset specificity and high IT asset uncertainty -> internal production, no outsourcing?
3.1 Cloud Computing & Transaction Cost

- Cloud Providers must have extremely large and expensive datacenters equipped with perfect network infrastructure.
- **Main operation costs for Cloud providers:**
 - Costs for electricity
 - Cooling costs
 - Labour costs
 - Taxes

 (Armbrust et al., 2009)
3.2 Cloud Computing & Transaction Cost

- Cloud user (or SaaS provider) can reduce following (Transaction) costs:
 - Pay only for those services and licenses which are really used
 - Software installation and maintenance costs are lowered (version updating is easy)
 - No need to invest in hardware (datacenters etc...)
 - Risks are moved to Cloud providers
 - If bandwidth of infrastructure is not good enough there may be problems with application speed

(Armbrust et al., 2009)
4. Cases / examples

Cloud providers:
- Amazon Elastic Compute Cloud (Amazon EC2 is a web service that provides resizable compute capacity in the cloud.)
- Salesforce.com (Cloud platform for business applications)
- Google App Engine (Platform for web applications)
- Windows Azure Platform (Environment for developers to create cloud applications and services) (Armbrust et al., 2009)

Cloud applications:
- Antivirus programs from F-Secure, McAfee, Norton and Panda (Mikrobitti 1/2010)
- Google applications like Gmail, Google Calendar and Docs (www.wikipedia.org)
5. Conclusion

- Large-scale distributed computing paradigm
- Transaction costs theory is a framework to evaluate whether to produce in-house or outsource
 - IT asset specificity & IT asset uncertainty + internal IT capability -> the scope of IT outsourcing
- Cloud provider -> maintaining and hardware costs
- Cloud user -> pays only for cloud services
References

- Mikrobitti -tietotekniikan lehti 1/2010