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Abstract The problem of service and resource matching is

being actively discussed currently as a new challenging task

for the next generation of semantic discovery approaches

for Web services and Web agents. A significant advantage

is expected when using an ontological approach to semanti-

cally describe and query services. A matchmaking problem

arises when a service is being queried and it includes the

distance measure between the required service description

and the one from the service registry. We realized the need to

analyze the applicability of different matchmaking methods

to agent development tools when implemented according to

agent technology specifications such as FIPA. We consider

three main groups of cases: matchmaking between classes of

service profiles in pure taxonomies, matchmaking between

classes in faceted taxonomies, and matchmaking between

instances of faceted taxonomies.

Keywords Agent technology . Ontology . Service

matching . Similarity

1. Introduction

The problem of service and resource matching is being hotly

discussed now as a new challenging task for the next genera-
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tion of annotation approaches to Web services and resources.

The most significant outcome in matching was reached using

an ontological approach to the description of a domain. The

ontologies and ontology description languages are currently

being developed by different standardization organizations

such as W3C consortium.

We have met the problem of resource (device, expert,

service) matchmaking in the SmartResource project [1, 2].

The SmartResource project, led by the Industrial Ontologies

Group, is aimed at developing a framework for the adapta-

tion of different heterogeneous resources to the common so-

called Global Understanding Environment (GUN) and provi-

sioning, based on this framework, a higher level agent-based

interoperability and resource description management.

A similar problem was met in the Adaptive Services Grid

project [3], which concentrated on the integration of two IT

worlds such as Semantic Web Services and Grid Computing

by an open generic software platform for adaptive services

discovery, creation, composition, and enactment to offer new

applications on Grid Services providing a well-defined range

of quality of service. The matchmaking of resources and ser-

vices is one of the most challenging tasks of the project. The

matchmaking problem addresses the question of the distance

measure between objects and because the SmartResource

project raised the task of enforcing the GUN platform with

agents, we realized the need to analyze the applicability of

different matchmaking methods to agent development tools

that are compliant to agent technology specifications such as

FIPA [4].

There are many approaches to defining distance between

any two entities (attributes, terms) based on their numerical

or semantic closeness. For example, Tailor and Tudhope [5]

have presented a hypermedia architecture that is supported by

a classification schema. Semantic closeness measures have

been developed to measure the closeness of terms in a schema
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which provides a platform for high-level navigation tools and

which can provide flexible access tools to a collection of

material. Two higher level navigation tools, navigation via

media similarity and best-fit generalization, also have been

developed. The similarity coefficients are extended in that

similarity is judged on the “semantic closeness” of the sets of

classification terms that are attached to the media nodes. The

similarity coefficient therefore needs to be able to handle sets

of classification terms with varying lengths, with non-exact

matches of terms, and where the pairing of terms between

media nodes may not be immediately obvious.

Brooks reports two experiments that investigated the se-

mantic distance model (SDM) of relevance assessment [6].

In the first experiment, graduate students of mathematics

and economics assessed the relevance relationships between

bibliographic records and hierarchies of terms composed of

classification headings and help-menu terms. The relevance

assessments of the classification headings, but not the help-

menu terms, exhibited both a semantic distance effect and a

semantic direction effect as predicted by the SDM. Topical

subject expertise enhanced both these effects. The second ex-

periment investigated whether the poor performance of the

help-menu terms was an experimental design artifact reflect-

ing the comparison of terse help terms with verbose classi-

fication headings. In the second experiment, the help menu

terms were compared to a hierarchy of single-word terms

where they exhibited both a semantic distance and semantic

direction effect.

Foo et al. [7] propose and define a modification of Sowa’s

metric on conceptual graphs. The metric is computed by lo-

cating the least subtype which subsumes the two given types,

and then adding the distance from each given type to the sub-

suming type.

The distance metric used by Rada et al. [8] represents the

conceptual distance between concepts. Rada et al. use only

the path length to determine this conceptual distance, with

no consideration of node or link characteristics. Distance is

measured as the length of the path representing the traversal

from the first classification term to the second. The closeness

of terms ranges from 1 (identical terms) to 0 (which repre-

sents that terms are not semantically close, although it does

not mean that they are disjoint in the classification schema).

Instance-based learning techniques typically handle con-

tinuous and linear input values well, but often do not handle

nominal input attributes appropriately. The Value Difference

Metric (VDM) was designed by Wilson and Martinez [9]

to find reasonable distance values between nominal attribute

values, but it largely ignores continuous attributes, requiring

discretization to map continuous values into nominal values.

Wilson and Martinez propose new heterogeneous distance

functions, called the Heterogeneous Value Difference Metric

(HVDM), the Interpolated Value Difference Metric (IVDM),

and the Windowed Value Difference Metric (WVDM). These

new distance functions are designed to handle applications

with nominal attributes, continuous attributes, or both. As

was mentioned in the Wilson and Martinez review [9], there

are many learning systems that depend upon a good distance

function to be successful. A variety of distance functions

are available for such uses, including the Minkowsky, Maha-

lanobis, Camberra, Chebychev, Quadratic, Correlation, and

Chi-square distance metrics; the Context-Similarity measure;

the Contrast Model; hyperrectangle distance functions; and

others.

The problem of service and resource matching (or mea-

suring distance between service query and registered service

profiles) is being actively discussed currently as a new chal-

lenging task for the next generation of annotation approaches

to Web services and Web agents. A significant advantage is

expected when using an ontological approach to semanti-

cally describe and query services. A matchmaking problem

arises when a service is being queried and the query includes

the distance measure between the required service descrip-

tion and the one from the service registry. We realized the

need to analyze the applicability of different matchmaking

methods to agent development tools implemented according

to agent technology specifications such as FIPA (Section 2).

We also consider three main groups of cases: matchmaking

between classes of service profiles in pure taxonomies (Sec-

tion 3); matchmaking between classes in faceted taxonomies

(Section 4); and matchmaking between instances of faceted

taxonomies (Section 5). Some samples of recent related work

are given in Section 6. We conclude in Section 7.

2. FIPA matchmaking algorithm

One of the crucial components of a multi-agent system is a

Registry to provide support for service registering and dis-

covering. According to FIPA specifications [10], the Service

Directory service is in charge of providing such functional-

ity within the Agent System. The Service Directory service

stores information of a service as an entry of its Service De-

scription. The Directory Facilitator [11] is a reification of the

Service Directory Service to provide a yellow page direc-

tory service for agents who have services to advertise. The

Directory Facilitator operates with the Service Descriptions,

which correspond to the structure of Fig. 1. The Service De-

scription consists of the name of the service, its type, its

supported interaction protocols, a list of ontologies, a list

of content languages, the owner of the service, and a list of

additional descriptive properties.

FIPA specifies a concrete matching criteria. The algorithm

has to perform syntactic and structural matching based on a

service template and a registered service description in the

Directory Facilitator. The service template does not match

the registered service description if:
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Fig. 1 Structure of Service Description

1. Any parameter of the service template does not exist in

the registered service description, or,

2. Any parameter of the service template does not match to

a corresponding parameter of the registered service.

A parameter of the service template matches a parameter

of registered service if both names are equal and their values

match.

For the Service Description it means that

− The name, type and ownership parameters match if their

values are equal; and

− Protocols, ontologies and properties parameters match if

each element of the set of the service template is matched

by an element of the set of the registered service.

A possible service description as part of the Agent De-

scription for Registration:

(service-description
:name BusTicketBookingService1
:type BusTicketBookingService
:ontologies(set ServiceOntology)
:properties(set
(property

:name Country
:value Finland)

(property
:name typeOfConnection
:value local)))

Service Template for matching:

(service-description
:type BusTicketBookingService
:ontologies (set ServiceOntology)
:properties (set
(property

:name Country
:value Finland)))

The main disadvantage is that the algorithm performs

only syntactic matching and does not utilize even easy-to-

implement and obvious possibilities of semantic matching.

For instance, the algorithm checks only the syntactic case-

insensitive equality of a string value of the type of the service

template with type of the registered service. The algorithm

takes into account only existing parameters and values in

the service template, and does not take into account any in-

formation about semantic relation of the parameters nor their

values defined in correspondent ontology. Thus the definition

area of the algorithm is restricted by the possible combina-

tion of optional parameters, user defined properties, and the

ranges of their values. As a result, the algorithm provides

a fewer number of possible matching services because of

the absence of analysis of the correspondent ontology. Last

but not least, the algorithm is a binary function with “yes”

and “no” answers instead of a more flexible approach of a

distance measure.

Different characteristics of multi-agent systems influence

the matching algorithms in the sense of what accessible infor-

mation to utilize during the matching process. For instance,

the Directory Facilitator is a registry of instances of services.

Agents can register services in arbitrary Directory Facilita-

tors. Instances of the service have a reference to ontology

through the type of service parameter. But ontology does not

have references to instances of classes of services. The ab-

sence of these references means that ontology cannot provide

a number of services of some type. But matching algorithms

can utilize numbers of instances to measure distances be-

tween classes more precisely.

3. Taxonomy-based distance measure

Having a service type in a search query, according to cur-

rent FIPA implementations, we can compare a query string

to service type1 strings of available services. Such a com-

parison may lose efficiency in a large and highly distributed

environment. However, new services will require additional

new service types, and it will be quite complex to bind all

services to a finite number of service types in order to save

unambiguity and thus allow for search efficiency.

The simplest solution for a dynamic environment is to

provide taxonomy of service types. The taxonomy provides

its entities with a class-subclass relationship. This relation-

ship is transitive, so if classA has subclass classB and

classB has subclass classC, then classC is a subclass

ofclassA also. Such a hierarchy will break the limitation in

the number of service types and will save—and even gain—

in search efficiency by providing unambiguous search. The

simple example of service type taxonomy (see Fig. 2) can

demonstrate the benefits of such approach.

The simplest hierarchy structure allows an arbitrary num-

ber of subclasses to be created, while saving the semantics of

1 Service type refers to a class in an ontology.

Springer



226 Appl Intell (2006) 25:223–237

Fig. 2 Simple service hierarchy

the upper ones. For example, if we extend TicketBook-
ingService class to four more specific subclasses, they

all still belong to TicketBookingService yet their in-

stances should be returned upon a search request looking

for TicketBookingService. Of course it is possible

to look for only direct instances of a certain class, but this

limitation can be used for a more precise search. For exam-

ple, if we search for only direct instances of Airplane-
TicketBookingService, we will not receive instances

of AllInOneTicketBookingService which could

provide us with the facility we look for.

Information that an instance of a class is also an instance

of all super classes of the class gives us the possibility

to implement the simplest reasoning on taxonomy. For

example, a search request,

(service-description
:type TicketBookingService
:ontologies (set ServiceOntology))

will not provide any response in the case when the FIPA

matching algorithm is used and there are no registered ser-

vices with such type in the Directory Facilitator.

But there are several services registered with types

of subclasses(BusTicketBookingService, Trai-
nTicketBookingService, etc.) of TicketBook-
ingService. The Directory Facilitator has to return such

services in response, as they are also a type of the requested

service that is seen in Fig. 3.

It is easy to implement the functionality of the Direc-

tory Facilitator to perform reasoning over a taxonomy utiliz-

ing the class-subclass relationship among types of services.

There are a number of open source libraries providing rea-

soning API for ontologies encoded in different languages.

For instance, JENA is a JAVA library for the implementa-

tion of Semantic Web features. It can operate with RDF-

and OWL-based ontologies. Concrete implementation of the

matching algorithm has to create the JENA model of the

ontology.

Then, instead of comparing syntactical equality of names

of direct classes of services, JENA gets all the subclasses of a

class of the requested service from the model and compares

them further using the FIPA algorithm of syntactic match.

This source code below allows the forming of a list of sub-

types of a type of the requested service:
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ArrayList subClasses = new ArrayList();
OntModel model = ModelFactory.createOntologyModel();
model.read("http://sample.domain/ServiceOntology.rdf","
RDF/XML");

OntClass requestedServiceClass =
model.getOntClass("http://sample.domain" +
"/ServiceOntology.rdf#TicketBookingService");

ExtendedIterator iterator =
requestedServiceClass.listSubClasses(false);

while ((iterator!=null)&&(iterator.hasNext())){
OntClass subClass = (OntClass) iterator.next();

subClasses.add(subClass.getLocalName());}

There are two possibilities for a deployment of the subclass

relation-based matching algorithm. The most appropriate one

is to realize it as a part of the Directory Facilitator, as Fig. 4

illustrates.

Such an architectural solution requires changes in the

FIPA specifications. But there is no need to change the proto-

col of request of agents to the Directory Facilitator. Basically

the Directory Facilitator embeds the source code mentioned

above to get a list of the types of services that are subclasses

of the requested service type. Using the list of subtypes, the

Directory Facilitator can perform the regular FIPA algorithm

for the syntactic matching of type and subtypes of the re-

quested service and for the types of the services registered in

the directory. As a result, the Directory Facilitator responds

to all services which have the requested type. Figure 5 shows

a sequence diagram of the described interaction between the

Agent, Directory Facilitator, and Ontology. The main func-

tional characteristics are

– an agent forms one request with a service type,

– the Directory Facilitator requests a list of subclasses for

the specified type of a service from the Ontology, then

– the Directory Facilitator performs internal iterations of the

syntactic match over a list of requested types of services.

Main nonfunctional properties are

– an agent operates according to the regular protocol , and

– the response of the Directory Facilitator is now semanti-

cally full.

Fig. 3 Subclasses of TicketBookingService
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Fig. 4 Component diagram
when the subclass matching
component belongs to the
Directory Facilitator

Fig. 5 Sequence diagram of an
interoperation of the Agent,
Ontology and Directory
Facilitator

The solution should be used as a possible elaboration of

FIPA specification. Implementing it out of the FIPA speci-

fication could cause a misunderstanding and a lack of inter-

operability of the enhanced Directory Facilitators with the

existing FIPA compliant components.

The second approach is to leave the Directory Facilitator

as is, while implementing a subclass matching as the Agent’s

functionality. Figure 6 depicts the architecture of this solu-

tion.

There is no need to change the FIPA specifications in

this instance. The agents could utilize this functionality with

the already existing implementations of the multi-agent sys-

tems. Figure 7 illustrates a sequence diagram of an interaction

among the Agent, the Ontology and the Directory Facilitator

for this architectural solution. The main functional charac-

teristics are

– the agent requests a list of subclasses for the specified type

of service from the Ontology,

– the agent iteratively forms requests over the list of re-

quested types of services, then

– the Directory Facilitator provides a syntactic matching ser-

vice according to the FIPA specification.

The agent collects the responses after the syntactic match.

The main nonfunctional properties are

– if needed, the Agent can itself form a semantic matching,

– the Directory Facilitator stays unchanged, and

– inefficient network utilization.

In some cases, it is reasonable to return in a search result

not only instances of the class being searched but also in-

stances of classes close to that being searched. For example,
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Fig. 6 Component diagram
when the subclass matching is
part of the Agent functionality

Fig. 7 Sequence diagram of the interoperation of the Agent, Ontology and Directory Facilitator

if we are looking for BusTicketBookingService and

no instances are available, then, probably, the user wouldn’t

mind getting instances of a sibling service, TrainTick-
etBookingService, as a result. Considering a general

case, we need to provide a distance metric to select the clos-

est classes for response when there are no instances of a

requested type.

One of the metrics could reflect generalization of classes.

The utilization of this semantic relation depends on the in-

terests of a domain and a task. For a search of some service

type, the answer can contain instances of a superclass in the

case where there are no instances of the requested service

class. It means, for example, that on a request for the Bu-
sTicketBookingService, the user may get instances

of TicketBookingService, which are all instances of

the other subclasses of TicketBookingService. If for

some domain or task such functionality is reasonable, then

the distance between the classes is 0 in the case of a subclass

relation and 1 for each instance of a superclass relation. For

instance, Fig. 8 shows thatTicketBookingService has

the distance of 0 to all its subclasses, the distance of 1 to the

direct superclass BookingService, the distance of 2 to

WebService, and the distance of 3 to Service. According

to the distance measure described above, the implementation

of a matching algorithm based on the subclass relation is a

particular case of the distance measure based on the subclass

and superclass relations.

The implementation of the matching algorithm based on

the generalization of classes requires changes of the FIPA

specifications. FIPA defines an object of the search con-

straints to limit the function of searching within a directory.

The object consists of three parameters: max-depth, the
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Fig. 8 Distances between TicketBookingService and other services

maximum depth of propagation of the search to the feder-

ated directories; max-results, the maximum number of

results to return for the search; and search-id, a globally

unique identifier for a search. An agent has to pass an ad-

ditional parameter, max-distance, to support the imple-

mentation of the generalization-based matching algorithm.

Max-distance is a positive integer, including zero, that

defines an expansion of the search over the ontology. The

value 0 requires services which are of the type of the re-

quested class and its subclasses. The value 1 includes the

direct superclasses and their subclasses in consideration.

Generally, the value of themax-distancedefines the level

of the superclass to which search could be extended if there

are no services on lower levels.

The federation of directories adds a complexity to the

implementation of this algorithm because the directory has

to meet the requirements of the max-results parameter

of the search constraints. One of the possible solutions is

to collect the matching services of the farthest classes in

respect to max-distance parameter. Then the search is

propagated with respect to themax-depth parameter while

integrating the resulting sets of services from the previous
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Fig. 9 Activity diagram of a matching algorithm based on generalization distance

Fig. 10 Extended structure of
the Search Constraints

directories. The response consists of a max-result or a

smaller number of the most specialized services. Figure 9

illustrates the algorithm described above.

Figure 10 shows the extended structure of the object of

the search constraints. Architectural considerations are the

same as for the matching algorithm based on the subclass

relation.

The Object Match algorithm [12] is more sophisticated. It

calculates the similarity of two concepts based on a hierar-

chy of concepts. The algorithm uses the concept of upwards

cotopy (UC) defined as follows:

UC(O j , H ) = {O j | H (Oi , O j ) ∪ O j = Oi } (1)

where taxonomy is given by an irreflexive, acyclic, transitive

relation class-subclass H and O is a class in a taxonomy.

The intersection of upwards cotopies of two classes is

I (O1, O2, H ) = UC(O1, H ) ∩ UC(O2, H ) (2)
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The union of upwards cotopies of two classes is

U (O1, O2, H ) = UC(O1, H ) ∪ UC(O2, H ) (3)

And according to the Object Match algorithm, the simi-

larity of two classes equals to:

S(O1, O2, H ) = |I (O1, O2, H )|
|U (O1, O2, H )| (4)

The algorithm reflects the fact that more specialized neigh-

bors are closer to each other than the more general ones.

Basically, the algorithm takes into account the quantity of

common and different parents with a sensitivity to the depth

of classes within the taxonomy.

This algorithm could be enhanced by taking into account

the width as well as the depth of the taxonomy. Similarity is

defined as follows:

Se(O1, O2, H )

=
∑

Oi ∈I (O1,O2,H ) |{O j |H ′(Oi , O j ) ∪ Oi = O j }|∑
Oi ∈U (O1,O2,H ) |{O j |H ′(Oi , O j ) ∪ Oi = O j }| (5)

where H ′ is a relation class—direct subclass.

Let us consider an example of the abilities of the algorithm

to reflect the depth and width of taxonomy. Figure 11 shows

three hierarchies of services.

We have to calculate the upwards cotopies in order to

measure the distance between D and E in the first hierarchy

H1, using formula 1:

UC(D, H1) = {D, B, A} (6)

UC(E, H1) = {E, B, A} (7)

The intersection and union of the cotopies are calculated

using formulas 2 and 3:

I (D, E, H1) = {B, A} (8)

U (D, E, H1) = {D, E, B, A} (9)

The similarity according to formula 4 equals

S(D, E, H1) = |{B, A}|
|{D, E, B, A}| = 1

2
(10)

The enhanced similarity by formula 5 is equal to

Se(D, E, H1)

= |{D, E, F, B}| + |{B, C, A}|
|{D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}| = 7

9

(11)

The second hierarchy H2 extends the first hierarchy H1 by

introducing a new subclass of B, thus raising the width of the

hierarchy. The upwards cotopies for D and E in such a case

are the same as in the first hierarchy. The intersection and

union of cotopies are also the same. The value of similarity

of D and E by formula 4 stays unchanged. The enhanced

similarity shows that D and E are semantically closer in the

second hierarchy:

Se(D, E, H2)

= |{G, D, E, F, B}|
|{G, D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}|

+ |{B, C, A}|
|{G, D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}|

= 8

10
(12)

The calculation of the similarity of D and E for the third hi-

erarchy H3 is analogical to the calculation for the first hierar-

chy. The similarities by formula 4 and the enhanced formula

5 are equal to:

S(D, E, H3) = |{B, A, G}|
|{D, E, B, A, G}| = 3

5
(13)

Fig. 11 Example on
Hierarchies
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Fig. 12 Property domain and range definition in Protégé

Se(D, E, H3)

= |{D, E, F, B}| + |{B, C, A}| + |{A, G}|
|{D, E, F, B}| + |{B, C, A}| + |{A, G}| + |{D}| + |{E}|

= 9

11
(14)

As we can see, D and E are semantically closer by both

formulas 4 and 5 in the third hierarchy as compared to the

first one.

4. Distance measure for ontology with facets

Faceted Classification [13] is a sophisticated alternative to

the traditional classification schemes and modern web direc-

tories, which put one item in only one place. Faceted clas-

sifications are based on the Colon Classification scheme of

Indian library scientist S.R. Ranganathan developed in the

1930s. Ranganathan created a set of properties or character-

istics or attributes of any subject, ideally mutually exclusive

(orthogonal) and exhaustive (complete), which means that

any object being classified could be assigned one of these

descriptions, which he called a facet. The outstanding ad-

vantage is that a hierarchy can be built starting with the facet

considered as the most important. A facet-based classifica-

tion has much more extended capabilities in comparison to

a taxonomy-based one. In ontological modeling it is quite

usual for a certain hierarchy to be selected as a backbone

for the whole Ontology, which is then powered by additional

properties assigned to the classes. The main hierarchy con-

sists of the objects representing the goal of a description. For

example, if we consider services as our description goal, then

we can organize them in the main class-subclass relationship

by their service type and then augment with additional prop-

erties, such as location, type of payment accepted, etc.

For example, we can add the property Location to the

BookingService class (Fig. 12).

We then provide the property Location with domain
and range characteristics. The domain defines the set of

classes allowed to have this property and the range defines

the allowed values for the property.

In our case, we set the domain value to the Service
class. This means that any instance of a Service class

or its subclasses may have the property Location. As a

range value type we set Class, and as an allowed super-

class for value—LocationOntology. In this way we de-

fine a controlled vocabulary for the property values. A con-
trolled vocabulary, or managed vocabulary, is an attempt

to limit the number of terms that will be admitted into a

discourse in order to improve communication. However, the

applicability of a controlled vocabulary in the quickly chang-

ing environments of P2P is still a matter of discussion and

research.

When comparing classes with properties, the distance can

be measured based on a number of discriminate properties.

The more identical properties the classes have, the more

similar classes are. The simple distance measure for two

classes, A and B with facets n A and nB, can be calculated by

formula:

D = |n A ∩ nB |
|n A ∪ nB | (15)
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So we divide the number of identical facets into the num-

ber of facets used for the description of both classes (identical

facets of both classes are counted only once).

For example, if class A has 5 facets {f1, f2, f3, f4, f5} and

class B has 7 facets {f1, f2, f3, f6, f7, f8, f9}, then distance

can be calculated as:

|n A ∩ nB | = |{ f1, f2, f3}| = 3
(16)

|n A ∪ nB | = |{ f1, f2, f3, f4, f5, f6, f7, f8, f9}| = 9

D = 3

9
= 1

3

5. Distance measure between instances in ontology

Faceted classification schemes may vary. The limited set of

allowed values (controlled vocabulary) for certain facet pro-

vides the ability to measure distance between two instances

having the same facet. If the allowed values are arranged in

taxonomy, it extends the distance measure precision. How-

ever, property (attribute) values can be from non-controlled

vocabulary, which means that only a Boolean match can be

applied for returning 1 if values are equal and 0 if not. If the

values are numerical then the distance can be measured using

a standard measure (e.g. Euclidean distance) however values

obtained should be normalized.

When an instance of a certain class is requested and can

not be found (e.g. we ask for the implementation of an online

train ticket service in Finland but there is no service currently

running), then it makes sense to return a bus ticket service

located also in Finland. Hence, we need to deal with instances

and assigned property values.

In our opinion, similarity (or distance) between instances

can be measured only using common properties and, thus,

their comparable values. However, the closest class to class

of instance should be found first. After the closest class is

found, its instances can be taken and the distance can be

measured based on different metrics.

Assume that we have two interpreted profiles with the

same set of attributes, which have numerical or nominal val-

ues. Assume also that the first profile is taken from the “ser-

vice requests” database and the second one from the “service

offerings” database. The distance between these two profiles

can be measured according to [14, 15] as follows:

E(X, Y ) =
√ ∑

∀i,xi ∈X,yi ∈Y

ωi · d(xi , yi )2 (17)

where X and Y are two vectors of the values of the attributes

of the two profiles. The component distance d(xi , yi ) for

every attribute is normalized by the range of the previously

known values of the attribute so that it is mostly within the

range [0, 1], and weighted by weights ωi according to the im-

portance of the attribute. The weight ωi may be the probabil-

ity that a client, whom a request (interpreted profile) belongs

to, will not be satisfied by an offering (interpreted profile of

the same structure) if the i-th attribute of these profiles is not

taken into account.

The Heterogeneous Euclidean-Overlap Metric is used for

both nominal and numerical features. This function defines

the component distance between two values of an attribute

as:

d(xi , yi )

=

⎧⎪⎪⎨⎪⎪⎩
if i-th attribute is nominal −

{
0, if xi = yi

1, otherwise

else :
|xi − yi |
rangei

(18)

where rangei is the range of the attribute i .
If the attribute is nominal but has values from the con-

trolled vocabulary organized in taxonomy, then the distance

between the two attribute values can be measured using dis-

tance measure techniques applicable to taxonomy, as de-

scribed in Section 3. So the distance can be defined as:

d(xi , yi ) =

⎧⎪⎪⎨⎪⎪⎩
if i-th attribute is nominal − distance

between ontology concept xi and yi

else :
|xi − yi |
rangei

(19)

The Interpolated Value Difference Metric defines the fol-

lowing component distance between the two values of an

attribute:

d(xi , yi )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ k∑
j=1

|P( j |i ∈ [xi , xi +�] )−P( j |i ∈ [yi , yi + �] )|2,

if i numerical (continuous) attribute√√√√ k∑
ci =1

|P( j |i = x i ) − P( j |i = yi )|2, otherwise,

(20)

where k is the number of classes of profiles; P( j | i = xi ) is

the conditional probability that a profile belongs to class j if

its attribute i has the value xi , and P( j |i ∈ [xi + �] ) is the

interpolated conditional probability that a profile belongs to

class j if its discreted attribute i has the value xi , and � is

the discretization step.
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Table 1 Services separated by
facet values Object Quantity

Web Services Total 10

PlaneTicketBookingService 3

TrainTicketBookingService 2

BusTicketBookingService 5

Services accepting Web money 4

Services not accepting Web money 6

PlaneTicketBookingService accepting Web money 1

TrainTicketBookingService accepting Web money 1

BusTicketBookingService accepting Web money 2

PlaneTicketBookingService not accepting Web money 2

TrainTicketBookingService not accepting Web money 1

BusTicketBookingService not accepting Web money 3

A more simple interpretation of the previous formula

might be:

d(xi , yi ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ C∑
c=1

[P(c|xi ) − P(c|yi )]2,

if i-th attribute is nominal;

|xi − yi |
rangei

, if i-th attribute is numerical.

(21)

A probabilistic approach requires prior knowledge of the

total number of instances of a certain class but, in the P2P

environment, it may not always be easy to obtain statistics

about instances and range values of numerical attributes. But

by having this data the calculations gain in accuracy. For

example, we have a preference to find a train ticket booking

service that accepts Web money (payment via the Internet)

and has a service load of not more than 60%. The importance

of service load is estimated as 0.2 and importance of transport

type (train, bus or plane) is 0.8 respectively. To calculate the

distance to the closest service profile we need the following

data:

– The total number of ticket booking service instances and

the number of service instances of each class;

– The total number of service instances accepting Web

money and the number of service instances of each class

that accept Web money;

– the service load value.

For example, we have 10 ticket booking service instances,

among them:

– three instances of PlaneTicketBookingService
– two instances of TrainTicketBookingService
– five instances of BusTicketBookingService

Among our 10 service instances only 4 accept Web money.

The four instances accepting Web money comprise a

PlaneTicketBooking Service, a TrainTick-
etBookingService and two instances of BusTicket
BookingService.The six remaining instances are: two

instances of PlaneTicketBookingService, one

TrainTicketBookingService and three instances of

BusTicketBookingService. The summary is pro-

vided in Table 1.

Let’s consider two service profiles (Table 2).

In order to calculate the distance from our preference to

the Service Profiles, we need conditional probability values

calculated according to Eq. (12) (see Table 3).

Table 2 Service profiles
attribute values Service Profile 1 Service Profile 2

ServiceType TrainTicketBookingService BusTicketBookingService
Load 80% 20%

Table 3 Conditional
probability values for the
calculation of the distance
between TrainTicket-
BookingService and
BusTicketBooking-
Service values

Probability Value

P(Accepts Web money | ServiceType = TrainTicketBookingService) 1/2

P(Accepts Web money | ServiceType = BusTicketBookingService) 2/5

P(Not accepts Web money | ServiceType = TrainTicketBookingService) 1/2

P(Not accepts Web money | ServiceType = BusTicketBookingService) 3/5
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So the distance can be calculated as:

d(“Train”, “Bus”)

=

√√√√√√√√√
⎛⎜⎜⎜⎝

(P(AcceptsWM | ServiceType = Train)

− P(AcceptsWM | ServiceType = Bus))2

+ (P(NotAccWM | ServiceType = Train)

− P(NotAccWM | ServiceType = Bus))2

⎞⎟⎟⎟⎠
(22)

Substituting the values in Eq. (22), we have:

d(“Train”, “Bus”)

=
√(

1

2
− 2

5

)2

+
(

1

2
− 3

5

)2

≈ 0, 141 (23)

Now we can calculate the distance of our preferences to

Service Profiles. Here we have to mention that the distance of

attribute having numerical value as a marginal value should

be calculated with an additional condition. In our case, we

assume that “60% load” parameter should be not more than

60%, hence the distance can be calculated as:

d(xi , yi ) =
⎧⎨⎩

0, if xi ≤ yi

|xi − yi |
rangei

, otherwise,

where rangei = max(yi ) − yi

(24)

The maximum range value for the Service Load attribute

is 100 because its value is a percentage.

Now, the distance to the Service Profiles is calculated us-

ing Eq. (17).

D(UserP, SP1) =
√

0.8 · 0 + 0.2 ·
(

80 − 60

100 − 60

)2

= 0.1

D(UserP, SP2) =
√

0.8 · (0.141)2 + 0.2 · 0 ≈ 0.126 (25)

where D(UserP, SP1) is a distance between User Preferences

and Service Profile 1 and D(UserP, SP2) is a distance be-

tween Preferences and Service Profile 2 respectively.

As we can notice from the equations above, it is pos-

sible to vary the weights so that the initially preferred

TrainTicketBookingService might be farther from

the BusTicketBookingService because of undesir-

able attribute values.

6. Related work

The application of semantic technology in different dis-

tributed environments is an open issue for many research

projects. Peer service discovery and matching, based on se-

mantic profiles described in [16], provides an ontology-based

matching and a distance measure based on the shortest path

between ontology nodes. However, the full power of the on-

tology is not used and more attention should be paid to overall

system architecture and interoperability of nodes.

Another recent activity [17], aimed at service discovery

within a grid environment, proposes a similarity metric for

measuring the distance between a service request and service

descriptions available in the registry. The metric is based on

a similarity function which is a weighted sum of matching

attributes, description and metadata. The weights are calcu-

lated as probabilistic functions.

A Semantic Similarity Measure for Semantic Web Ser-

vices is proposed in [18]. The formula for semantic similarity

is defined as follows: sim(a, b) = fcommon (a, b)
fdesc(a, b)

, where fcommon

is the common function measuring the information value of

the description that is shared between a and b, and fdesc is the

description function giving the value of the total information

content of a and b. But the key feature is how the functions

fcommon and fdesc are calculated. Deep analysis is done to-

wards the formation of the description sets. The authors use

OWL Lite as a descriptive language and give examples of

the applicability on OWL-S descriptions.

7. Conclusions

In this paper, we tried to analyze the applicability of the

ontology-based models for the improvement of the searching

capabilities in Agent Systems. Firstly, we have demonstrated

the drawbacks of the matching algorithm of the Directory

Facilitator, compliant with the FIPA specification [11]. The

algorithm responds to an incorrect set of services from the

ontological point of view because of an instance of a class is

also an instance of all superclasses of this class. Secondly, we

demonstrated through the examples that matching algorithms

based on a distance or similarity measure are more flexible

and appropriate in the task of a services search because they

provide responses even if an exact match does not exist. With

a matching algorithm based on distance measure, there is

a possibility for a user to prepare and efficiently execute

requests based on uncertain or incomplete information.

The main conclusion is that the Agent, Grid Services,

and Web Service technologies can be effectively integrated

with each other. However such integration requires cor-

rect ontology-based matching tools, which can be consid-

erably improved by similarity measure methods. Analysis

shows that some of the algorithms can be easily implemented
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without radical changes within the existing tools and stan-

dards while giving more sophisticated results of matching.

Although an elaboration of the existing standards requires

deeper analysis of the quality characteristics of the dis-

tance measure-based matching algorithms, we consider these

changes as inevitable.
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