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Abstract 

Paper deals with the problem of learning ranks of 

classifiers in ensembles. The problem of ordering of 

objects to classify is discussed. Two marginal 

approaches for learning, batch and incremental, with 

corresponding ordering strategies are analyzed. 

Presented algorithm lays between marginal methods, 

and it orders training examples by the deviation of 

classifiers opinions to match restrictions on learning 

time, cost and quality. Few aspects of this algorithm 

are experimentally investigated: classifiers ranks 

after learning, learning quality, ensemble accuracy 

and dependence between rank recalculation budget 

and ensemble accuracy. It was found, that 

descending order of examples provides fast rank 

learning with the best learning quality. 

1. Introduction 

Common way for combining multiple opinions of 

classifiers from an ensemble is to form one common 

opinion from the set of individual opinions. This common 

opinion can be individual opinion of one classifier or 

integrated. The usual way to select it is weighted voting of 

classifiers, where classifiers vote for their opinions with 

their ranks. This arises the problem of learning ranks of 

classifiers during processing the training set. 

Machine learning techniques can be broadly categorized 

as either batch or incremental. Batch systems learn by 
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examining a large collection of instances en masse and 

forming a single concept. Incremental systems evolve and 

change a classification scheme as new observations are 

processed [15]. Both kinds have their advantages and 

disadvantages. 

Five advantages of using incremental rank changing, 

dealing with domains with hidden changes in context, 

were presented in [5]. These benefits arise from the idea 

to partition the domain and to use context-dependent order 

of processing these parts. The main disadvantage of 

incremental learning is dependency of learning results on 

the order of training examples. In [5] a form of cross-

validation over time is used for local concept validation. 

Few methods for eliminating dependency on voting order 

are included in well-known classification algorithms. 

Bootstrap Aggregation (Bagging) technique [2] selects m 

training examples randomly with replacement. These 

training examples are used to create T bootstrap samples 

and to generate T classifiers. Final classifier is built from 

the most precise classifiers. Random order just hides the 

problem of selecting correct order of objects. 

Well-known Boosting algorithm (ADABOOST), 

presented in [3, 4] manipulates training examples, like 

bagging. ADABOOST algorithm uses a probability 

distribution over the training examples. On the i-th 

iteration it draws a training set of size m by sampling with 

replacement according to the probability distribution. 

Then it uses this training set to produce the i-th classifier. 

The order of learning is presented with the probability 

distribution and few advances are made to improve this 

distribution formula for better performance. 

An attempt to compare experimentally both bagging and 

boosting algorithms is made in [13]. Experiments showed, 

that boosting algorithm usually works better, than 

bagging. On the other hand, boosting also produces severe 

degradation on some datasets. Author found the course of 

these fails in the voting scheme. Modified scheme gives 
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error rate approximately 3% less, than original scheme. 

From the other hand, [3] presents larger experiments with 

the same algorithms. It was found, that bagging is much 

more competitive with boosting. Two important 

differences between their experiments and [13] can 

explain this discrepancy. At first, in [3] there was used 10 

times greater number of tunes in their experiments. 

Second, another method for resampling of training data 

was used. Note, that both differences only change an order 

of processing data. 

Very important problem of comparing techniques arises in 

this area. Learning and classification results strongly 

depend the input data. This makes it very difficult to 

compare techniques theoretically. And most researchers 

use experimental comparison of classification techniques 

to hide dependency on the input data in huge number of 

datasets.  

Several phenomena of experimental comparison of 

classification techniques are discussed in [14]. Most 

papers use artificial datasets for comparison, as well as 

tuning algorithms to map those datasets. In [14] it was 

found that unproper selection of datasets can result in 

statistically invalid conclusions. It was recommended to 

use partitioning of datasets and to run a cross-validation to 

avoid pitfalls, suffered by many experimental studies. 

Present paper continues the research, started in [6]. This 

paper deals with incremental learning and presents 

ranking technique for learning Allen temporal relations. 

The problem of voting strategy’s influence on voting 

results was experimentally investigated in [11]. Three 

strategies, consequent, called as real-time strategy, 

iterative consequent, called as batch, and iterative parallel 

were investigated. The dynamics of voting results, ranks 

and quality of voting results showed, that voting process 

greatly depends on the selection of voting strategy. It was 

found, that we must carefully select the strategy to obtain 

good voting results. But no method for context-dependent 

selection of the strategy was presented there. 

In the present paper we investigate the problem of 

selecting proper order of training examples for fast 

learning of classifiers ranks. We consider two basic 

strategies for ordering: batch and incremental and propose 

a new combined strategy, which matches several 

restriction on learning process.  

In the second chapter of this paper we define basic 

concepts, used throughout the paper. Third chapter 

presents two basic marginal voting strategies and two 

iterative kinds of them. Our approach for combining 

marginal strategies and the algorithm is presented and 

discussed in the fourth chapter. Next chapter describes  

experiments hold and their results. We finish with 

conclusions and appendix with some diagrams. 

2. Basic Concepts 

2.1 Notation 

We define the model for learning ranks of classifiers as 

the sixth-tuple <D,C,O,L,L*,T>, where: 

 D D D Dd 1 2, , ... ,  is the set of d training examples. 

 C C C Cn 1 2, , ... ,  is the set of n classifiers, which form 

the ensemble C . A numeral rank is assigned to each 

classifier. These ranks form the set   r r r rn 1 2, ,...,  

where each ri  is the rank of corresponding classifier 

C i ni , , 1 . 

 L L L Ll 1 2, , ... ,  is the set of l possible labels, or 

classes, which can be assigned to training examples. 

 L L L L d* * , * ,... , * 1 2  is the set of real labels, 

already known for training examples. 

The matrix Oij  of classifiers opinions defines classes, 

assigned by individual classifiers. It is defined as follows: 

O

O O O

O O O

O O O

d

d

n n dn
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where O O L i d j nij ij, , , , ,  1 1  represents the class or 

label, assigned to the training example Di  by the 

classifier C j . 

To change classifier rank we need to know how «far» is 

it’s opinion from the real class. Usually we can not 

measure the distance between classes, except some narrow 

cases. But we know exactly, whether classifier opinion 

equals to the real class or not. We use this information to 

create the matrix E of classifiers errors, as follows: 
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2.2 Evaluation of Learning Quality  

The aim of classification process is to predict the class 

precisely. Quality of classification is usually measured 

with error rate of an ensemble. The aim of learning ranks 

is to assign ranks to classifiers, that will minimize bad 
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classifier’s influence on ensemble opinion. This 

possibility will change during processing training 

examples, because processing of new examples will assign 

another ranks to classifiers. We define quality of learning 

ranks Q i  after processing the i-th training example as 

follows: 

Q
n

r e i di j ji

j

n

  




1

1

1

, ,

 

Quality after processing the whole training set Qd  is the 

quality of learning, because these final ranks will then be 

used in classification. The aim of learning is to minimize 

parameter Qi : Qi  min . 

2.3 Ranking 

We use incremental learning, and consequent rank 

changing after processing a group of training examples. 

Rank refinement strategy RS defines the process of rank 

recalculation. The main formula used to refine the rank of 

each classifier after the -th group is the following: 

r r ri
v

i
v

i
v  1  , 

where the value of ri
v  (punishment or prize value), is 

equal to 

r ei
v

i
v v
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n
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1
, 

The value  i
v  depends the rank refinement strategy 

selected. We use the strategy «Leaders meet greater 

requirements than outsiders». The formula for  i
v  under 

this strategy is as follows: 
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This formula forces rank leaders, who make an error, to 

be punished in rank more, than outsiders, who made the 

same error. This corresponds to the principle of greater 

responsibility for leaders. 

3. Basic Voting Strategies 

Voting strategy VS is the order, in which we must process 

training data. Voting strategy also defines the moments in 

which we must recalculate ranks of classifiers. Formally, 

we define voting strategy as the order: 

VS D or R D Di i |  

Symbol R in the above formula denotes the process of 

rank recalculation, conducted by the rank refinement 

strategy RS. Symbol Di shows current training example. 

Appearance of this symbol forces the strategy to proceed 

classifiers opinions on this example and to calculate error 

rate for each classifier. Voting process is illustrated in 

Figure 1. In Figure 1 symbol E represents error rate of 

each classifier, other symbols are defined above. Voting 

strategy reorders classifiers opinions from the upper table 

to manage learning process, presented in the lower table. 

Two basic voting strategies correspond to incremental and 

batch learning systems. Consequent voting strategy 

demands passing training examples one-by-one with rank 

recalculation just after every issue, as follows: 

VS D R D R D Rconsequent d 1 2, , , ,..., ,  

This strategy will require d rank recalculations to proceed 

d examples. Each rank refinement uses classifiers error 

rates e , obtained on the previous vote. 

Parallel voting strategy demands passing training 

examples one-by-one, as under the consequent strategy, 

but it requires only one rank recalculation after 

proceeding all examples: 

VS D D D Rparallel d 1 2, ,..., ,  

Parallel strategy summarizes error rates on all d votes, and 

uses this sum in rank recalculation: 

e ei

i

d






1

 

Both strategies can be iterative. Iterative voting strategy 

VS * runs corresponding strategy few times to obtain 

better rank convergence. The formulas are the following: 

VS VS VS VS
consequent consequent consequent consequent

k  1 2, , ... ,

VS VS VS VSparallel parallel parallel parallel
k* , ,..., 1 2  

In the above formulas symbols VS represent processing 

training examples and running rank recalculations under 

the corresponding strategy. 

The number of iterations k must be selected to correspond 

the context of classification process. The context may 

contain restrictions on classifiers ranks, number of rank 

recalculations, time of classification process, etc. One 

possible context, number of allowable rank recalculations, 

is investigated below. 

4. Combined Voting Strategy 

4.1 Few Ways to Combine Basic Strategies 

There are few ways for combining marginal voting 

strategies. Let parameter m to denote the number of 

training examples to be processed without rank changing.  
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Manipulating  this parameter allows creating compromise 

strategies from consequent (m=1) to parallel (m=d), 

where d is the size of the training set. At least two factors 

influence selection of m. First factor presents restrictions 

on allowable number b of rank recalculations: 

d

m
b m

d

b
   , where b is rank recalculation 

budget. Second factor deals with dynamics of the domain 

and the training set. If time L is required to process one 

classifier opinion and the situation in the domain changes 

after time , then the following restriction on m arises: 

d

m
t m

dt
   


.  

Another dimension of combining is in selecting parameter 

k for iterative strategies. Main restrictions for k are 

produced by rank recalculation budget and required 

learning quality. 

4.2 Voting Strategy For Fast Rank Learning 

We developed a combined strategy, that uses information 

about the diversity of classifiers opinions and 

recalculation budget to maximize speed of learning ranks. 

Classifiers error influence their ranks only after rank 

recalculation. For speed rank changing we must do rank 

recalculations as frequent as possible. We suppose that 

each rank recalculation takes computer time and has its 

cost. Hence, we must do rank recalculations as rear as 

possible to save money.  

We order training examples according to diversity of 

classifiers opinions on them: ascending or descending. 

Ascending order lets classifiers change their ranks softly, 

starting with the less conflicting examples, that are easy to 

classify. Then they continue with more conflicting and 

more difficult examples. Descending order lets classifiers 

to start with the most difficult problem, without spending 

computer time of solving easy examples.  

4.3 Partitioning method 

The key idea for partitioning is to make summary error 

rates e  for every rank recalculation, as equal as possible. 

That forces each recalculation to do the same amount of 

rank changing and to judge the same amount of errors. 

This is the most efficient way of using limited number of 

recalculations. For this we partition the domain into parts 

with the same summary error of classifiers opinions. 

The partitioning algorithm takes the training set D, matrix 

of classifiers errors E  and the number k of possible rank 

recalculations as input. Algorithm produces the partition 

S S S S Dk i

i

k

1 2

1

, ,..., ,  



  of training examples. The 

expression E S( )  denotes mean error rate for classifier 

opinions on the examples from S. 

The algorithm is presented in Figure 2. Mean error rate 

E C
of classifiers on every vote, used in the algorithm is 

defined as follows: 

E
n

e di
C

ij

j

n
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1

1

, , i . 

Maximal error rate of the part Emax  is defined as follows: 

 D1 D2 D3 D4 ... Dd 

C1 O11 O21 O31 O41 ... Od1 
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... ... ... ... ...  ... 
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L*4 L*3    L*1 L*d    L*2 

 

Figure 1. Voting process 
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E
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Ei
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i

d

max  




1

1

. 

This method orders training examples by deviation of 

classifiers opinions. If we will consider lower deviation as 

a sign of higher ensemble competence, then we will find 

similar ideas in [1]. In this work classifiers in the 

ensemble are grouped into an ordered list by classifier’s 

competence, presented with corresponding threshold. This 

order can be presented with the order of classifier’s ranks 

after learning. Unfortunately, in [1] a special domain of 

recognizing images of Venus is used, and we can not 

compare their algorithm with the present one. 

The background of ascending order of training examples 

is to give easy tasks to experts (classifiers) first, and then 

continue with hard problems. The examples with minimal 

deviation of classifiers opinions seems to be the easiest. 

The background of descending order is the opposite: to 

give experts hard task first, and then continue with easy 

problems. We suppose, that tasks with diverse classifiers 

opinions are more difficult. 

5. Experimental comparison 

We used IRIS data set from the UCI Machine learning 

repository of databases [10] for experiments. This data set 

has 150 examples with four numeral attributes and three 

classes. The ensemble was constructed with five well-

known classifiers: ID3, MC4, Decision Table with 

majority votes (Table majority), Decision table with 

simple votes (Table no majority) and Naive-Bayes. ID3 

and MC4 are well described in [12], both decision table 

methods are presented in [7], and Naive-Bayes is 

investigated in [9].  

Well-known MLC++ machine learning library [8] was 

used to produce opinions of individual classifiers. 12 

examples from the data set were used to train individual 

classifiers, and the rest — to train the ensemble.  

Rank dynamics for classifiers under the strategy with 

descending order is presented in Figure 3 and Figure 4 for 

rank recalculation budget of 5 and 20 recalculation 

respectively. Rank dynamics for ascending order strategy 

is presented in Figure 5 and Figure 6 for budget of 5 and 

20. In these figures X-axis represent training examples 

from 1 to 140, Y-axis represent rank of each classifier on 

every example. Quality evaluations and mean 

classification error are marked on this axis, too. 

Experimental results are presented in Table 1. Column 

Quality contains the final learning quality, Budget column 

contains corresponding number of rank recalculations, 

column Rank leaders contains classifiers, whose final 

ranks are more than 0.6. Column Rank outsiders contains 

Input: D, k, E . 

Output:  S S S S D S D D Dk i

i

k

i k k1 2

1

, ,..., , , | 



    

0. Initialize the partition: S i ki   , ,1  

1. Calculate the mean error rate of classifiers on every vote Ei
C . 

2. Put domain objects in descending or ascending order of mean error rates, taken at step 1. This produces the 

order of domain objects o o od1 2, ,..., , where o D o Di i

i

d

 



,  

1

  and E E i di
C

i
C  1 1 1, , . 

3. Calculate maximal error rate of the part Emax . 

4. Let I=0, J=1 

5. I=I+1 

6. If i>d then goto step 9. 

7. If  E S Ej  max  then J=J+1 Else  Add object oi  to the part S j : S S oj j i  . 

8. Goto step 5 

9. End 

Figure 2. The algorithm for partitioning 
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classifiers with final ranks less than 0.3. Mean ranks 

classifiers have final ranks between 0.3 and 0.6.  

Table 1 shows that increasing of rank recalculation budget 

generally changes the final  order of classifiers by ranks. 

Five rank recalculations are not sufficient for this data set, 

but 10 or more recalculations produce very similar results. 

This forms the first experimental result: both strategies 

provide similar rank ordering of classifiers on the end of 

learning process. 

Quality of learning process is few times better under 

descending order of examples, than under ascending or 

random order. Descending order provides quality about 

0.05, ascending order – 0.35, which is 7 times worse. 

Even random order is better, than ascending, with the 

quality of 0.24. The second experimental result is: 

descending order provides 7 times better quality, than 

ascending order, and 5 times better quality, than random 

order. 

Final ensemble will include all these classifiers, combined 

with voting. We investigated the accuracy of this 

ensemble with ranks assigned during learning process. 

Note, that learning quality deals only with rank and errors 

of each classifier, while accuracy deals with error rate of 

the whole ensemble. We expect, that accuracy will be 

higher, than quality, because poor classifiers will 

influence quality, while their opinions will be ignored due 

to selection made by voting. 

Accuracy of individual classifiers on IRIS data set is 

presented in Table 3. Decision Table classifiers have 

extremely poor accuracy, that’s why they were punished 

under all orders and budgets. 

Accuracy of the ensemble with simple non-weighted 

Table 1. Experimental results: learning ranks 

Quality Budget Rank leaders Mean ranks Rank outsiders 

Descending order 

0.0688 5 MC4, ID3, NB TM, TNM  

0.0533 10 ID3, NB, MC4 TM TNM 

0.0449 15 ID3, NB, MC4 TM TNM 

0.0401 20 ID3, NB MC4, TM TNM 

Ascending order 

0.3871 5 MC4, ID3 NB, TM, TNM  

0.3677 10 MC4, ID3 NB TM, TNM 

0.3427 15 ID3, MC4 NB TM, TNM 

0.3361 20 MC4, ID3 NB TM, TNM 

Random order 

0.2415 20 ID3, MC4, NB TM TNM 

Table 2. Experimental results: ensemble accuracy 

Number  Ensemble accuracy under the order: 

of rank Final, under the order Change, under the order 

recalculations ascending descending random ascending descending 

5 0.8913 0.8043 0.8768 — — 

10 0.8913 0.8913 0.8406 0.0000 0.0870 

20 0.9420 0.9203 0.8261 0.0507 0.0290 

40 0.9203 0.9493 0.8913 -0.0217 0.0290 

80 0.9638 0.9710 0.9058 0.0435 0.0217 
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voting of classifiers, on the data set is equal to 0.7174. 

The ensemble, constructed with non-weighted voting 

produces poor results, than most it’s classifiers. Table 2 

presents accuracy of the ensemble with ranked majority 

voting. This ensemble accuracy is greatly better, than any 

individual accuracy due to rank refinement. This is the 

third, expected experimental result: developed algorithm 

forms ranks, which increase accuracy of the ensemble. 

Table 3. Classifier’s accuracy 

Classifier Accuracy 

ID3  0.8841 

MC4  0.8551 

Table Majority  0.3188 

Table no Majority  0.0072 

Naive Bayes  0.8406 

 

It is shown, that doubling recalculation budget is required 

to keep linear accuracy growth under descending order. 

Ascending and random orders provide not evident 

accuracy changing while doubling budget. This makes the 

fourth experimental result: only descending order 

provides simple accuracy dependence on recalculation 

budget, double budget will linearly (mostly constantly) 

increase the accuracy. 

6. Conclusions 

We conclude with the following results: 

 The problem of managing the order of training 

examples is formulated. Existent well-known 

classification algorithms manipulates this order, and 

authors use to change ordering to improve performance of 

their algorithms, without considering ordering problem 

separately. Two basic marginal voting strategies: 

consequent and parallel have limited applications. But we 

can combine them to create flexible strategies. 

 Few directions for combining were given on the basis 

of possible restrictions on learning process: required 

learning quality, allowable cost, etc. A method for 

creating combined strategy to match demands on learning 

cost and learning speed was developed and experimentally 

investigated.  

Experiments forced us to the following experimental 

results. 

 Both strategies provide similar rank ordering of 

classifiers on the end of learning process. 

 Descending order provides 7 times better quality, than 

ascending order, and 5 times better quality, than random 

order. 

 Developed algorithm forms ranks, which increase 

accuracy of the ensemble. 

 Only descending order provides simple accuracy 

dependence on recalculation budget, double budget will 

linearly (mostly constantly) increase the accuracy. We 

must prefer descending order of training examples to get 

fast and high-quality rank learning. 

The order of training examples is not managed inside the 

intervals with the same mean ensemble error. But such a 

higher-level management is needed. Also 

recommendations for enhancing cross-validation and 

other standard ways of ordering must be developed and 

experimentally investigated in the future. 
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Appendix 

Classifier's rank dynamics
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Figure 3. Rank dynamics under descending order, 5 recalculations 
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Figure 4. Rank dynamics under descending order, 20 recalculations 

Classifier's rank dynamics
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Figure 5. Rank dynamics under ascending order, 5 recalculations 
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Figure 6. Rank dynamics under ascending order, 20 recalculations 
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Figure 7. Rank dynamics under random order, 20 recalculations 

 


