

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 1

Managing Training Examples for Fast Learning of Classifiers

Ranks

Boris Omelaenko

Metaintelligence Lab.

Kharkov State Technical

University of Radioelectronics

Kharkov, Ukraine

boris@milab.kharkov.ua

Vagan Terziyan

Metaintelligence Lab.

Kharkov State Technical

University of

Radioelectronics

Kharkov, Ukraine

vagan@milab.kharkov.ua

Seppo Puuronen

Department of Computer Science

and Information Systems

University of Jyvaskyla

Jyvaskyla, Finland

sepi@jytko.jyu.fi

Abstract

Paper deals with the problem of learning ranks of

classifiers in ensembles. The problem of ordering of

objects to classify is discussed. Two marginal

approaches for learning, batch and incremental, with

corresponding ordering strategies are analyzed.

Presented algorithm lays between marginal methods,

and it orders training examples by the deviation of

classifiers opinions to match restrictions on learning

time, cost and quality. Few aspects of this algorithm

are experimentally investigated: classifiers ranks

after learning, learning quality, ensemble accuracy

and dependence between rank recalculation budget

and ensemble accuracy. It was found, that

descending order of examples provides fast rank

learning with the best learning quality.

1. Introduction

Common way for combining multiple opinions of

classifiers from an ensemble is to form one common

opinion from the set of individual opinions. This common

opinion can be individual opinion of one classifier or

integrated. The usual way to select it is weighted voting of

classifiers, where classifiers vote for their opinions with

their ranks. This arises the problem of learning ranks of

classifiers during processing the training set.

Machine learning techniques can be broadly categorized

as either batch or incremental. Batch systems learn by

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the CSIT copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Institute for Contemporary Education JMSUICE. To

copy otherwise, or to republish, requires a fee and/or special

permission from the JMSUICE.

Proceedings of the Workshop on Computer Science

and Information Technologies CSIT’99

Moscow, Russia, 1999

examining a large collection of instances en masse and

forming a single concept. Incremental systems evolve and

change a classification scheme as new observations are

processed [15]. Both kinds have their advantages and

disadvantages.

Five advantages of using incremental rank changing,

dealing with domains with hidden changes in context,

were presented in [5]. These benefits arise from the idea

to partition the domain and to use context-dependent order

of processing these parts. The main disadvantage of

incremental learning is dependency of learning results on

the order of training examples. In [5] a form of cross-

validation over time is used for local concept validation.

Few methods for eliminating dependency on voting order

are included in well-known classification algorithms.

Bootstrap Aggregation (Bagging) technique [2] selects m

training examples randomly with replacement. These

training examples are used to create T bootstrap samples

and to generate T classifiers. Final classifier is built from

the most precise classifiers. Random order just hides the

problem of selecting correct order of objects.

Well-known Boosting algorithm (ADABOOST),

presented in [3, 4] manipulates training examples, like

bagging. ADABOOST algorithm uses a probability

distribution over the training examples. On the i-th

iteration it draws a training set of size m by sampling with

replacement according to the probability distribution.

Then it uses this training set to produce the i-th classifier.

The order of learning is presented with the probability

distribution and few advances are made to improve this

distribution formula for better performance.

An attempt to compare experimentally both bagging and

boosting algorithms is made in [13]. Experiments showed,

that boosting algorithm usually works better, than

bagging. On the other hand, boosting also produces severe

degradation on some datasets. Author found the course of

these fails in the voting scheme. Modified scheme gives

Managing Training Examples for Fast Learning of Classifiers Ranks 2

error rate approximately 3% less, than original scheme.

From the other hand, [3] presents larger experiments with

the same algorithms. It was found, that bagging is much

more competitive with boosting. Two important

differences between their experiments and [13] can

explain this discrepancy. At first, in [3] there was used 10

times greater number of tunes in their experiments.

Second, another method for resampling of training data

was used. Note, that both differences only change an order

of processing data.

Very important problem of comparing techniques arises in

this area. Learning and classification results strongly

depend the input data. This makes it very difficult to

compare techniques theoretically. And most researchers

use experimental comparison of classification techniques

to hide dependency on the input data in huge number of

datasets.

Several phenomena of experimental comparison of

classification techniques are discussed in [14]. Most

papers use artificial datasets for comparison, as well as

tuning algorithms to map those datasets. In [14] it was

found that unproper selection of datasets can result in

statistically invalid conclusions. It was recommended to

use partitioning of datasets and to run a cross-validation to

avoid pitfalls, suffered by many experimental studies.

Present paper continues the research, started in [6]. This

paper deals with incremental learning and presents

ranking technique for learning Allen temporal relations.

The problem of voting strategy’s influence on voting

results was experimentally investigated in [11]. Three

strategies, consequent, called as real-time strategy,

iterative consequent, called as batch, and iterative parallel

were investigated. The dynamics of voting results, ranks

and quality of voting results showed, that voting process

greatly depends on the selection of voting strategy. It was

found, that we must carefully select the strategy to obtain

good voting results. But no method for context-dependent

selection of the strategy was presented there.

In the present paper we investigate the problem of

selecting proper order of training examples for fast

learning of classifiers ranks. We consider two basic

strategies for ordering: batch and incremental and propose

a new combined strategy, which matches several

restriction on learning process.

In the second chapter of this paper we define basic

concepts, used throughout the paper. Third chapter

presents two basic marginal voting strategies and two

iterative kinds of them. Our approach for combining

marginal strategies and the algorithm is presented and

discussed in the fourth chapter. Next chapter describes

experiments hold and their results. We finish with

conclusions and appendix with some diagrams.

2. Basic Concepts

2.1 Notation

We define the model for learning ranks of classifiers as

the sixth-tuple <D,C,O,L,L*,T>, where:

 D D D Dd 1 2, , ... , is the set of d training examples.

 C C C Cn 1 2, , ... , is the set of n classifiers, which form

the ensemble C . A numeral rank is assigned to each

classifier. These ranks form the set r r r rn 1 2, ,...,

where each ri is the rank of corresponding classifier

C i ni , , 1 .

 L L L Ll 1 2, , ... , is the set of l possible labels, or

classes, which can be assigned to training examples.

 L L L L d* * , * ,... , * 1 2 is the set of real labels,

already known for training examples.

The matrix Oij of classifiers opinions defines classes,

assigned by individual classifiers. It is defined as follows:

O

O O O

O O O

O O O

d

d

n n dn

11 21 1

12 22 2

1 2

...

...

...

...

,

where O O L i d j nij ij, , , , , 1 1 represents the class or

label, assigned to the training example Di by the

classifier C j .

To change classifier rank we need to know how «far» is

it’s opinion from the real class. Usually we can not

measure the distance between classes, except some narrow

cases. But we know exactly, whether classifier opinion

equals to the real class or not. We use this information to

create the matrix E of classifiers errors, as follows:

E

e e e

e e e

e e e

e
L

L
i d j n

d

d

n n dn

ij
i

i

11 21 1

12 22 2

1 2

1

0
1 1

...

...

...

...

,

, *

, *
, , , ,

 if O

 if O

ij

ij

2.2 Evaluation of Learning Quality

The aim of classification process is to predict the class

precisely. Quality of classification is usually measured

with error rate of an ensemble. The aim of learning ranks

is to assign ranks to classifiers, that will minimize bad

 Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 3

classifier’s influence on ensemble opinion. This

possibility will change during processing training

examples, because processing of new examples will assign

another ranks to classifiers. We define quality of learning

ranks Q i after processing the i-th training example as

follows:

Q
n

r e i di j ji

j

n

1

1

1

, ,

Quality after processing the whole training set Qd is the

quality of learning, because these final ranks will then be

used in classification. The aim of learning is to minimize

parameter Qi : Qi min .

2.3 Ranking

We use incremental learning, and consequent rank

changing after processing a group of training examples.

Rank refinement strategy RS defines the process of rank

recalculation. The main formula used to refine the rank of

each classifier after the -th group is the following:

r r ri
v

i
v

i
v 1 ,

where the value of ri
v (punishment or prize value), is

equal to

r ei
v

i
v v

i
v () , v

j
v

j

n

n
e

1
,

The value i
v depends the rank refinement strategy

selected. We use the strategy «Leaders meet greater

requirements than outsiders». The formula for i
v under

this strategy is as follows:

i
v i

v v
i
v

i
v v

i
v

r e

r e

() , () ;

() , () .

1 0

0

2

2

 if

 if

This formula forces rank leaders, who make an error, to

be punished in rank more, than outsiders, who made the

same error. This corresponds to the principle of greater

responsibility for leaders.

3. Basic Voting Strategies

Voting strategy VS is the order, in which we must process

training data. Voting strategy also defines the moments in

which we must recalculate ranks of classifiers. Formally,

we define voting strategy as the order:

VS D or R D Di i |

Symbol R in the above formula denotes the process of

rank recalculation, conducted by the rank refinement

strategy RS. Symbol Di shows current training example.

Appearance of this symbol forces the strategy to proceed

classifiers opinions on this example and to calculate error

rate for each classifier. Voting process is illustrated in

Figure 1. In Figure 1 symbol E represents error rate of

each classifier, other symbols are defined above. Voting

strategy reorders classifiers opinions from the upper table

to manage learning process, presented in the lower table.

Two basic voting strategies correspond to incremental and

batch learning systems. Consequent voting strategy

demands passing training examples one-by-one with rank

recalculation just after every issue, as follows:

VS D R D R D Rconsequent d 1 2, , , ,..., ,

This strategy will require d rank recalculations to proceed

d examples. Each rank refinement uses classifiers error

rates e , obtained on the previous vote.

Parallel voting strategy demands passing training

examples one-by-one, as under the consequent strategy,

but it requires only one rank recalculation after

proceeding all examples:

VS D D D Rparallel d 1 2, ,..., ,

Parallel strategy summarizes error rates on all d votes, and

uses this sum in rank recalculation:

e ei

i

d

1

Both strategies can be iterative. Iterative voting strategy

VS * runs corresponding strategy few times to obtain

better rank convergence. The formulas are the following:

VS VS VS VS
consequent consequent consequent consequent

k 1 2, , ... ,

VS VS VS VSparallel parallel parallel parallel
k* , ,..., 1 2

In the above formulas symbols VS represent processing

training examples and running rank recalculations under

the corresponding strategy.

The number of iterations k must be selected to correspond

the context of classification process. The context may

contain restrictions on classifiers ranks, number of rank

recalculations, time of classification process, etc. One

possible context, number of allowable rank recalculations,

is investigated below.

4. Combined Voting Strategy

4.1 Few Ways to Combine Basic Strategies

There are few ways for combining marginal voting

strategies. Let parameter m to denote the number of

training examples to be processed without rank changing.

Managing Training Examples for Fast Learning of Classifiers Ranks 4

Manipulating this parameter allows creating compromise

strategies from consequent (m=1) to parallel (m=d),

where d is the size of the training set. At least two factors

influence selection of m. First factor presents restrictions

on allowable number b of rank recalculations:

d

m
b m

d

b
 , where b is rank recalculation

budget. Second factor deals with dynamics of the domain

and the training set. If time L is required to process one

classifier opinion and the situation in the domain changes

after time , then the following restriction on m arises:

d

m
t m

dt

.

Another dimension of combining is in selecting parameter

k for iterative strategies. Main restrictions for k are

produced by rank recalculation budget and required

learning quality.

4.2 Voting Strategy For Fast Rank Learning

We developed a combined strategy, that uses information

about the diversity of classifiers opinions and

recalculation budget to maximize speed of learning ranks.

Classifiers error influence their ranks only after rank

recalculation. For speed rank changing we must do rank

recalculations as frequent as possible. We suppose that

each rank recalculation takes computer time and has its

cost. Hence, we must do rank recalculations as rear as

possible to save money.

We order training examples according to diversity of

classifiers opinions on them: ascending or descending.

Ascending order lets classifiers change their ranks softly,

starting with the less conflicting examples, that are easy to

classify. Then they continue with more conflicting and

more difficult examples. Descending order lets classifiers

to start with the most difficult problem, without spending

computer time of solving easy examples.

4.3 Partitioning method

The key idea for partitioning is to make summary error

rates e for every rank recalculation, as equal as possible.

That forces each recalculation to do the same amount of

rank changing and to judge the same amount of errors.

This is the most efficient way of using limited number of

recalculations. For this we partition the domain into parts

with the same summary error of classifiers opinions.

The partitioning algorithm takes the training set D, matrix

of classifiers errors E and the number k of possible rank

recalculations as input. Algorithm produces the partition

S S S S Dk i

i

k

1 2

1

, ,..., ,

 of training examples. The

expression E S() denotes mean error rate for classifier

opinions on the examples from S.

The algorithm is presented in Figure 2. Mean error rate

E C
of classifiers on every vote, used in the algorithm is

defined as follows:

E
n

e di
C

ij

j

n

1

1

1

, , i .

Maximal error rate of the part Emax is defined as follows:

 D1 D2 D3 D4 ... Dd

C1 O11 O21 O31 O41 ... Od1

C2 O12 O22 O32 O42 ... Od2

...

Cn O1n O2n O3n O4n ... Odn

D4 D3 D1 Dd D2

E E E E E

 R ... R R ... R

L*4 L*3 L*1 L*d L*2

Figure 1. Voting process

time

Voting strategy

r k
 r 3

 r 2
 r1

 r 0

 Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 5

E
k

Ei
C

i

d

max

1

1

.

This method orders training examples by deviation of

classifiers opinions. If we will consider lower deviation as

a sign of higher ensemble competence, then we will find

similar ideas in [1]. In this work classifiers in the

ensemble are grouped into an ordered list by classifier’s

competence, presented with corresponding threshold. This

order can be presented with the order of classifier’s ranks

after learning. Unfortunately, in [1] a special domain of

recognizing images of Venus is used, and we can not

compare their algorithm with the present one.

The background of ascending order of training examples

is to give easy tasks to experts (classifiers) first, and then

continue with hard problems. The examples with minimal

deviation of classifiers opinions seems to be the easiest.

The background of descending order is the opposite: to

give experts hard task first, and then continue with easy

problems. We suppose, that tasks with diverse classifiers

opinions are more difficult.

5. Experimental comparison

We used IRIS data set from the UCI Machine learning

repository of databases [10] for experiments. This data set

has 150 examples with four numeral attributes and three

classes. The ensemble was constructed with five well-

known classifiers: ID3, MC4, Decision Table with

majority votes (Table majority), Decision table with

simple votes (Table no majority) and Naive-Bayes. ID3

and MC4 are well described in [12], both decision table

methods are presented in [7], and Naive-Bayes is

investigated in [9].

Well-known MLC++ machine learning library [8] was

used to produce opinions of individual classifiers. 12

examples from the data set were used to train individual

classifiers, and the rest — to train the ensemble.

Rank dynamics for classifiers under the strategy with

descending order is presented in Figure 3 and Figure 4 for

rank recalculation budget of 5 and 20 recalculation

respectively. Rank dynamics for ascending order strategy

is presented in Figure 5 and Figure 6 for budget of 5 and

20. In these figures X-axis represent training examples

from 1 to 140, Y-axis represent rank of each classifier on

every example. Quality evaluations and mean

classification error are marked on this axis, too.

Experimental results are presented in Table 1. Column

Quality contains the final learning quality, Budget column

contains corresponding number of rank recalculations,

column Rank leaders contains classifiers, whose final

ranks are more than 0.6. Column Rank outsiders contains

Input: D, k, E .

Output: S S S S D S D D Dk i

i

k

i k k1 2

1

, ,..., , , |

0. Initialize the partition: S i ki , ,1

1. Calculate the mean error rate of classifiers on every vote Ei
C .

2. Put domain objects in descending or ascending order of mean error rates, taken at step 1. This produces the

order of domain objects o o od1 2, ,..., , where o D o Di i

i

d

,

1

 and E E i di
C

i
C 1 1 1, , .

3. Calculate maximal error rate of the part Emax .

4. Let I=0, J=1

5. I=I+1

6. If i>d then goto step 9.

7. If E S Ej max then J=J+1 Else Add object oi to the part S j : S S oj j i .

8. Goto step 5

9. End

Figure 2. The algorithm for partitioning

Managing Training Examples for Fast Learning of Classifiers Ranks 6

classifiers with final ranks less than 0.3. Mean ranks

classifiers have final ranks between 0.3 and 0.6.

Table 1 shows that increasing of rank recalculation budget

generally changes the final order of classifiers by ranks.

Five rank recalculations are not sufficient for this data set,

but 10 or more recalculations produce very similar results.

This forms the first experimental result: both strategies

provide similar rank ordering of classifiers on the end of

learning process.

Quality of learning process is few times better under

descending order of examples, than under ascending or

random order. Descending order provides quality about

0.05, ascending order – 0.35, which is 7 times worse.

Even random order is better, than ascending, with the

quality of 0.24. The second experimental result is:

descending order provides 7 times better quality, than

ascending order, and 5 times better quality, than random

order.

Final ensemble will include all these classifiers, combined

with voting. We investigated the accuracy of this

ensemble with ranks assigned during learning process.

Note, that learning quality deals only with rank and errors

of each classifier, while accuracy deals with error rate of

the whole ensemble. We expect, that accuracy will be

higher, than quality, because poor classifiers will

influence quality, while their opinions will be ignored due

to selection made by voting.

Accuracy of individual classifiers on IRIS data set is

presented in Table 3. Decision Table classifiers have

extremely poor accuracy, that’s why they were punished

under all orders and budgets.

Accuracy of the ensemble with simple non-weighted

Table 1. Experimental results: learning ranks

Quality Budget Rank leaders Mean ranks Rank outsiders

Descending order

0.0688 5 MC4, ID3, NB TM, TNM

0.0533 10 ID3, NB, MC4 TM TNM

0.0449 15 ID3, NB, MC4 TM TNM

0.0401 20 ID3, NB MC4, TM TNM

Ascending order

0.3871 5 MC4, ID3 NB, TM, TNM

0.3677 10 MC4, ID3 NB TM, TNM

0.3427 15 ID3, MC4 NB TM, TNM

0.3361 20 MC4, ID3 NB TM, TNM

Random order

0.2415 20 ID3, MC4, NB TM TNM

Table 2. Experimental results: ensemble accuracy

Number Ensemble accuracy under the order:

of rank Final, under the order Change, under the order

recalculations ascending descending random ascending descending

5 0.8913 0.8043 0.8768 — —

10 0.8913 0.8913 0.8406 0.0000 0.0870

20 0.9420 0.9203 0.8261 0.0507 0.0290

40 0.9203 0.9493 0.8913 -0.0217 0.0290

80 0.9638 0.9710 0.9058 0.0435 0.0217

 Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 7

voting of classifiers, on the data set is equal to 0.7174.

The ensemble, constructed with non-weighted voting

produces poor results, than most it’s classifiers. Table 2

presents accuracy of the ensemble with ranked majority

voting. This ensemble accuracy is greatly better, than any

individual accuracy due to rank refinement. This is the

third, expected experimental result: developed algorithm

forms ranks, which increase accuracy of the ensemble.

Table 3. Classifier’s accuracy

Classifier Accuracy

ID3 0.8841

MC4 0.8551

Table Majority 0.3188

Table no Majority 0.0072

Naive Bayes 0.8406

It is shown, that doubling recalculation budget is required

to keep linear accuracy growth under descending order.

Ascending and random orders provide not evident

accuracy changing while doubling budget. This makes the

fourth experimental result: only descending order

provides simple accuracy dependence on recalculation

budget, double budget will linearly (mostly constantly)

increase the accuracy.

6. Conclusions

We conclude with the following results:

 The problem of managing the order of training

examples is formulated. Existent well-known

classification algorithms manipulates this order, and

authors use to change ordering to improve performance of

their algorithms, without considering ordering problem

separately. Two basic marginal voting strategies:

consequent and parallel have limited applications. But we

can combine them to create flexible strategies.

 Few directions for combining were given on the basis

of possible restrictions on learning process: required

learning quality, allowable cost, etc. A method for

creating combined strategy to match demands on learning

cost and learning speed was developed and experimentally

investigated.

Experiments forced us to the following experimental

results.

 Both strategies provide similar rank ordering of

classifiers on the end of learning process.

 Descending order provides 7 times better quality, than

ascending order, and 5 times better quality, than random

order.

 Developed algorithm forms ranks, which increase

accuracy of the ensemble.

 Only descending order provides simple accuracy

dependence on recalculation budget, double budget will

linearly (mostly constantly) increase the accuracy. We

must prefer descending order of training examples to get

fast and high-quality rank learning.

The order of training examples is not managed inside the

intervals with the same mean ensemble error. But such a

higher-level management is needed. Also

recommendations for enhancing cross-validation and

other standard ways of ordering must be developed and

experimentally investigated in the future.

7. References

1. Asker L. and Maclin R. "Ensembles as a Sequence of

Classifiers". In: Proceedings of the International Joint

Conference on Artificial Intelligence IJCAI-97,

Nagoya, Aichi, Japan, August 23-29, 1997.

2. Breiman L. "Bagging Predictors". Machine Learning

24, 1996, pp. 123-140.

3. Freund Y. and Schapire R. E. "Experiments with a

new boosting algorithm". In: Proceedings of the

Thirteenth International Conference on Machine

Learning, Bari, Italy, 1996, July 3-6.

4. Freund Y., Iyer R., Schapire R. E. and Singer Y. "En

Efficient Algorithm for Combining Preferences". In:

Proceedings of the Fifteenth International Conference

on Machine Learning, Madison, Wisconsin USA,

1998, July 24-27.

5. Harries M. and Horn K. "Learning stable concepts in

domains with hidden changes in context". In:

Proceedings of the Thirteenth International

Conference on Machine Learning, Workshop on

Learning in Context Sensitive Domains, Bari, Italy,

1996, July 3-6.

6. Kaikova H. and Terziyan V. "Temporal Knowledge

Acquisition From Multiple Experts". In: Shoval P. &

Silberschatz A. (Eds.), Proceedings of NGITS’97 -

The Third International Workshop on Next Generation

Information Technologies and Systems, Neve Ilan,

Israel, 1997, June 30 - July 3, pp. 44 - 55.

7. Kohavi R. "The power of decision tables". In: N.

Lavrac & S. Wrobel, eds, Proceedings of the

European Conference on Machine Learning, Lecture

Notes in Artificial Intelligence 914, Springer Verlag,

Berlin, Heidelberg, New York, 1995, pp. 174-189.

8. Kohavi R., Sommerfield D. and Dougherty J. "Data

Mining using MLC++: A machine learning library in

C++". International Journal on Artificial Intelligence

Tools 6(4), 1997, pp. 537-566.

Managing Training Examples for Fast Learning of Classifiers Ranks 8

9. Langley P., Iba W. and Thompson K. "An Analysis of

Bayesian Classifiers". In: Proceedings of the Tenth

National Conference on Artificial Intelligence, AAAI

Press/MIT Press, 1992, pp. 223-228.

10. Merz C. and Murphy P. "UCI Repository of Machine

Learning Databases".

http://www.ics.uci.edu/~mlearn/MLRepository.html,

1998.

11. Omelaenko B., Terziyan V. and Puuronen S. "Multiple

Expert Knowledge Acquisition: Experimental

Investigation of Three Voting Strategies". In: STeP’98

Human and Artificial Information Processing, Finnish

Conference on Artificial Intelligence, 7-9 September,

Jyvaskyla, Finland, Publ. of the Finnish AI Society,

1998.

12. Quinlan J. R. "C4.5: Programs for Machine Learning".

Morgan Kaufmann Publishers, Los Altos, California,

1993.

13. Quinlan J. R. "Bagging, Boosting, and C4.5". In: The

Thirteenth National Conference on Artificial

Intelligence AAAI’96, August 4-8, Portland, Oregon,

AAAI Press/The MIT Press, 1996.

14. Salzberg S. "On Comparing Classifiers: Pitfalls to

Avoid and a Recommended Approach". Data Mining

and Knowledge Discovery 1, 1997, p. 317-328.

15. Schlimmer J. and Granger Jr. R. "Incremental

Learning From Noisy Data". Machine Learning 1,

1986, pp. 317-354.

Appendix

Classifier's rank dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

Training examples

C
la

ss
if

ie
rs

 r
an

k
s

Quality ID3 MC4 Table majority

Table no majority Naive Bayes Mean error

Figure 3. Rank dynamics under descending order, 5 recalculations

 Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 9

Classifier's rank dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

Training examples

C
la

ss
if

ie
rs

 r
an

k
s

Quality ID3 MC4 Table majority

Table no majority Naive Bayes Mean error

Figure 4. Rank dynamics under descending order, 20 recalculations

Classifier's rank dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

Training examples

C
la

ss
if

ie
rs

 r
an

k
s

Quality ID3 MC4 Table majority

Table no majority Naive Bayes Mean error

Figure 5. Rank dynamics under ascending order, 5 recalculations

Managing Training Examples for Fast Learning of Classifiers Ranks 10

Classifier's rank dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

Training examples

C
la

ss
if

ie
rs

 r
an

k
s

Quality ID3 MC4 Table majority

Table no majority Naive Bayes Mean error

Figure 6. Rank dynamics under ascending order, 20 recalculations

Classifier's rank dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

Training examples

C
la

ss
if

ie
rs

 r
an

k
s

Quality ID3 MC4 Table majority

Table no majority Naive Bayes Mean error

Figure 7. Rank dynamics under random order, 20 recalculations

