

University of Osnabrück

Masters Thesis

A Framework for Market-based Coordination

in Multi-Agent Systems

Author: Arnim Bleier

First Supervisor: PhD. Artem Katasonov

Second Supervisor: Prof. Claudia Pahl-Wostl

Date of Submission: 30.09.2008

i

Declaration

I hereby declare that this thesis is my own work and effort. Where other

sources of information have been used, they have been acknowledged.

Jyväskylä, Finland

30.09.2008 …………………………….

 Signature

ii

Abstract

Although the concept of Agents has many advantages when it comes to

engineering complex systems, the downside is that their organization is

difficult to be specified at the time of design. Literature sketches two major

directions for the search of a solution: centralized top-down approaches and

(economic) bottom-up mechanisms. Especially the economic direction is not

studied much by the scientific community, yet. This thesis describes the

theory of Market-based Coordination and presents a prototype

implementation. The characteristic features of this thesis are, the policy

guided decision method (i.e. the commitment of agents to trades is regulated

upon general rules), as well as the realization of domain independency,

ensuring interoperability.

Zusammenfassung

Das Konzept von Softwareagenten hat viele Vorteile wenn es darum geht

komplexe Systeme aufzubauen. Die Kehrseite ist, daß das Design der

Organisation nur schwer im Vornherein festzulegen is. In der Literatur

können zwei Strömungen unterschieden werden, die als Anssatz für die

Lösung dienen können: zentralisierte Top-down-Ansätze und (ökonomische)

Bottom-up-Mechanismen. Insbesondere die ökonomische Richtung ist bisher

nur wenig untersucht worden. Diese Arbeit beschreibt die Theorie von Market-

based-Koordination und präsentiert darauf aufbauend deren Implementierung

in einem Prototyp. Die Hauptmerkmale dieser Arbeit sind, daß Agenten

Entscheidungen aufgrund von Policies treffen (d.h. ob ein Agent einen Handel

eingeht ist bestimmt durch allgemeine Regeln), sowie die Realisierung von

Domain-Unabhängigkeit zur Gerwährleistung von Interoperabilität.

ii

List of Acronyms

ACC Agent Communication Channel

AMS Agent Management System

DAML DARPA Agent Markup Language

DF Directory Facilitator

FIPA Foundation of Intelligent Physical Agents

N3 Notation3

MAS Multi-Agent-Systems

OWL Web Ontology Language

OWL DL Web Ontology Language Description Logic

KB Knowledge Base

RAB Reusable Atomic Behaviour

RDF Resource Description Framework

RDFS RDF Schema

RuleML Rule Markup Language

S-APL Semantic Agent Programming Language

SPARQL Protocol and RDF Query Language

SWRL Semantic Web Rule Language

URI Uniform Resource Identifier

WWW World Wide Web

W3C World Wide Web Consortium

XML extensible Markup Language

iii

List of Figures

Figure 1: The policy model 8

Figure 2: W3C Layer Cake 16

Figure 3: Application and domain Ontologies 19

Figure 4: The layers of the Ubiware agent 22

Figure 5: Ontology of Functions 28

Figure 6: Two point Discrete Function 28

Figure 7: Linear Function 31

Figure 8: Polynomial Function 32

Figure 9: A makeup for the states of the KB 34

Figure 10: Ontology of Complex Functions 35

Figure 11: The auctioning process 42

Figure 12: An example auction 44

Figure 13: The serial auctioning Process 47

Figure 14: Simulation topology 49

Figure 15: Simulation performance 50

iv

Table of Contents
Declaration ...i
List of Acronyms... ii
List of Figures ...iii

1 Introduction... 1

2 Preliminary Considerations.. 3
2.1 A first Enquiry of Market­based Coordination ... 3
2.2 Related Work ... 5

3 Agents and their Policies.. 8
3.1 The Concept of Policies.. 8
3.2 Policies for Reflex Agents ... 9
3.3 Policies for Goal­based Agents... 9
3.4 Policies for Utility Maximizing Agents..10
3.5 The Benefit of Utility Functions...11

4 A Utility and Trading Model ..11
4.1 States, Attributes and Functions ...12
4.2 Additive Utility Functions ..13
4.3 Cardinal versus Ordinal Utility Theory..13
4.4 The Auctioning Process...15

5 The Semantic Web..16
5.1 The Vision..16
5.2 Unicode and URI ...17
5.3 The XML layer ..17
5.4 The Metadata Level ...17
5.5 The Ontology level ...18
5.6 Two Ontologies for One Purpose ..19

6 The used Platform..20
6.1 The Vision of the Ubiware Platform ..20
6.2 FIPA and Jade ...21
6.3 Layers of a UBIWARE Agent...22

7 The Semantic Agent Programming Language ..23
7.1 The Knowledge Base...24
7.2 The Rules ...25
7.3 Integration with existing infrastructure ...27
7.4 Build in functions ...28

8 Modelling Mathematic Functions ..29
8.1 Discrete Functions...29
8.2 Linear Functions...31
8.3 Polynomial Functions ..32

9 Mapping a Graph to a Value...34
9.1 A Makeup for States Of The World ...34
9.2 Modelling Complex Functions ..35
9.3 Evaluating Complex Functions...36
9.4 Refining Complex Functions ...38

v

10 Contracts ..39
10.1 Auctions ...39
10.2 Bidding ...40
10.3 Reasoning inside a Container ..42
10.4 The Evaluation..43

11 Dynamic Allocation ...44
11.1 Locking into the Future ..45
11.2 Determining the Value Of Change..46
11.3 An Application Example ...48

12 Conclusion ...51
12.1 Achievements, Limitations and further Research..51
12.2 Acknowledgements ..52

Appendix..53

Bibliography ...65

1

1 Introduction
In many domains the concept of Multi-Agent Systems has proved to be useful.

A group of agents allows making effective (re-) use of specialists designed for

a single task (e.g., supplying weather information, controlling servos,

providing a human user interface), instead of having a monolithic program

which is specialized at no task and hard to adapt to new domains of

application.

However, the organisation of a Multi-Agent System is difficult to be specified

at the time of design in the face of a dynamic environment. The challenge is to

coordinate all of these agents to follow a single, global purpose. One research

stream is to describe a system of multiple collaborating agents as one single

agent that has a variety of degrees of freedom. The issue hereby is that this

only relocates the question. Furthermore, such an approach demands that all

information is transmitted to a central instance, resulting in a highly vulnerable

system. Thus, the whole system is disabled if the central coordinating unit

fails.

Decentralised approaches address these drawbacks. The assumption is that

each agent works essentially independent, acting on locally accessible

information. Agents may coordinate with other agents to decompose a task

into subtasks or to achieve something that cannot be achieved by a single

agent. The benefit of such an approach is that only little communication is

required, since the agents only transmit information to their associates. Also,

the system is less vulnerable, since the entire functioning no longer relies on a

single coordinating unit. This works best for tasks that can be split into largely

independent subtasks, or tasks for which the desired performance of the

system results upon the aggregation of individual actions. Although some

Multi-Agent Systems inspired by social analogues have been reported (e.g.

Gaertner, 2007), they are limited to operate on simple problems only. The

difficulty is to determine what particular individual actions produce the desired

emergent behaviour, and to adopt these systems to varying goals.

2

In most cases agents solve problems of limited complexity. These agents are

designed to perform tasks such as fetching information from a database,

controlling a device, or processing data from a sensor. To use an

economically inspired system for coordinating such agents seems natural.

The field of economics is mainly concerned with investigating a population of

specialized (human) agents creating services and goods. In the last century

decentralized as well as centralized approaches had been tested on a large

scale. The Planned economy uses a centralized method in which the state or

government coordinates the production. However, it has been argued that

such a central organized system is barley able to use all available information,

hard to be optimized, and inflexible to adapt to new requirements. In addition

to these back draws the most fatal one is the decupling of action and

accountability at the individual level resulting in a very low incentive to achieve

more than the plan demands.

In a Multi-Agent System inspired by Market economy agents coordinate with

each other to solve problems in a decentralized manner. The agents commit

trades as they fit and because of the fact that the participants in the market

act only to increase their own utility; the invisible hand lets a highly productive

system emerge. It is assumed that the agents themselves have the most

appropriate knowledge about their needs and can search for their satisfaction.

The principle of the unity of action and accountability ensures that agents

harvest the benefits of their good decisions as well as their bad decisions.

Agents compete with each other to consume services at the lowest possible

pricing or cooperate to accomplish something what one alone would not be

able to do. However, independent of the form of interaction agents act only in

the pursuit of their utility. On the following pages, Adam Smith’s invisible hand

touches Multi-Agent Systems. Roughly the structure is divided into three main

blocks. In the first block (chapter 2-4) theoretical concepts are investigated. In

the second block (chapter 5-7) concepts needed for the third block are

introduced. In the last block (chapter 8-11) the market mechanism is

constructed step by step.

3

2 Preliminary Considerations
This initial section has the purpose of making the reader familiar with the

requirements a Market-based Multi-Agent System faces. Furthermore, it gives

an overview on related work.

2.1 A first Enquiry of Market‐based Coordination
In recent years an increasing need to cope with ongoing changes and

disturbances in manufacturing systems can be recognized. Consequently

constant adaptation and high flexibility are needed for their control (Brussel,

1998). Multi-Agent Systems promise to cope with these challenges

successfully.

The basic building blocks of Multi-Agent System (agents) are citizens of two

worlds; having an informational component and may control a physical

component / resource. The informational component contains information

about the state of the world (called Knowledge Base), has rules that allow the

operation on its KB, and manages the physical resource. The primary focus in

this thesis is on this informational component.

Agents are considered to be autonomous and cooperating (Sierra, 1998). The

concept of autonomy views an agent as capable of fulfilling its goals.

However, an agent is not isolated but just a part of a system; fostering

cooperation between agents is curricular to allow the system to fulfil its

purpose. The Market-based approach to coordination is a natural response to

Gou Luh and Kyoya (1998), pointing out the importance of localized

information and decision-making while maintaining cooperation with other

agents.

Terminological coordination refers to the exchange of information for the

purpose of joint acting; thus, cooperation. From the perspective of an agent a

coordination protocol is needed to transport information from one agent to

another one. From the perspective of the system a coordination mechanism is

needed to allow cooperation - to improve the overall state of the system.

Information-sharing and decision-making capabilities are required to enable

cooperation between agents.

4

In the economic tradition cooperation is the mutual assistance between

egoists (Adelsberger, 2000). Whereby egoists are in the case of the Multi-

Agent Systems agents trying to achieve their goal as good as possible, i.e.

are Utility Maximizing agents. Viewing cooperation as assistance among

Utility Maximizing agents leads to the efficiency postulate: Utility Maximizing

agents cooperate only if doing so increases the utility of booth agents

(Oberender, 2004 p. 8). Consequently, equilibrium analysis is one aspect in

the development of algorithms for the computation of efficient outcomes in

cooperative situations. The Market-based approach to cooperation allocates

resources to agents by means of benefits and costs, calculated by the

individual agents. Given a certain good each agent has to decide on its own

which opportunity costs it is willing to pay and act accordingly; that is, trying to

buy the good it is interested in. Direct exchange of one good against another

one is not always possible. Consequently, the presence of a meaningful

currency that resembles the scarcity of resources is required (Ygge, 1996).

Furthermore, each agent needs mapping from the goods to a utility valuation,

called Utility Function; that assigns each good to a value.

In a cooperative situation an agent providing resources, services or goods is

called supplier; an agent in demand for it is called consumer. Individual

agents are not necessarily designated a priori as supplier or consumers; an

agent can act on both sides, depending on the situation. The allocation of

goods from the suppliers to the consumers is pareto-efficient, if no agent is

harmed and at least one agent is better off in comparison to the situation

without the allocation (Oberender, 2004 p. 41). Since this restricts market

transactions to those that are mutual beneficial the supplier of a good must

receive a compensation that is at least as high as the costs for providing the

good; and the buyer cannot be forced to provide a higher compensation than

the good it receives is worth for it. The compensation takes place in terms of

money; its amount is known as price.

Up to yet, the necessity to trade goods against money between agents

supplying goods and agents demanding goods has been recognized. If the

market mechanism is working with respect to the information flow, all agents

having a demand would ask all agents rotationally satisfying that demand

5

about the pricing in order to optimize the decision about a trade partner.

Consuming agents have an interest to purchase goods from the cheapest

provider; and providers have an interest to sell goods to agents that are most

in need of them. This leads to an individual decision-making based on a kind

of negotiation between all potential buyer-seller pairs. The coordination

mechanism of auctioning is required to structure the negotiation (McAfee,

1987).

2.2 Related Work
The Market-based coordination of Multi-Agent Systems is related to many

fields of research. In this paragraph various approaches related to the

approach taken in this thesis are examined.

Much of the work on negotiations between software agents can be traced

back to the Contract Net (Smith, 1980). Smith’s work is a communication

protocol for distributed problem solving. The aim of Contract Net protocol is to

enable opportunistic, adaptive task allocation by announcing tasks, placing

bids, and awarding contracts. A manager agent can offer a task to other

agents, playing a contractor role, which can in the next step submit bids

based on their capabilities to execute the task. In a further step the manager

awards the task to one of the bidders, and the task gets allocated to the

winner, i.e. contractor. In the Contract Net, agents are not designed statically

to be either managers or contractors, but these are roles that agents take on

dynamically depending on the situation. Since in the original proposal no

(internode-) language for the description of tasks had been specified, the

approach remains rather unspecific and limited. Related work includes such

as the Enterprise system that allocates tasks by means of negotiation

mechanisms as well as protocols supporting coalition formation among agents

(Malone, 1988). A more recent paper addressing the issue of language for the

description of tasks in the Contract Net have been put forward by Sandholm

and Lesser (1995). Protocols of the Contract Net family are designed to

enable selfish agents to cooperate on tasks without the need to previously

assign a special relationship between them. While the Contract Net protocol is

used in many closed systems no common agreed standard emerged for the

description of tasks. Furthermore, the approach only allows a binary decision

6

weather to allocate a task or not; and thus, cannot be used to express a fain-

grained and preference-based market scenario.

In more recent years DR-Negotiate and SweetDeal have been developed

(Skylogiannisa, 2007; Grosof, 2003). Both are XML based approaches using

rules to specify contracts as well as the behaviour of agents in general. The

rules can be expressed in RuleML and SWRL, respectively. Both languages

have already some kind of standardization, but have not reached the status of

a W3C recommendation (Horrocks, 2004). However, DR-Negotiate as well as

SweetDeal do not provide any direct approach to model utility maximizing

behaviour of agents, but only an institutional corridor to comply with. Since it

is possible to express Utility Functions via the introduction of a preferential

ranking between different institutional corridors (as it will be discussed in

paragraph 3.4) an extension of these approaches is in theory possible, but for

a larger choice-set hard to realize.

A further relevant stream of research has been developed from the WS-

Agreement Partner Selection approach (Oldham, 2006). The work defines a

language as well as a protocol for establishing agreements between two

parties. The key feature of this work is that ontologies (vocabularies) are used

to facilitate the matching process between offered services and searches for

services carried out. Those ontologies allow taking service offers into account

that would have been dismissed otherwise. However, the WS-Agreement

Partner Selection results only in a set of satisfactory offers of services and not

in a ranking between them as needed for a market approach. Thus, this work

suffers the same limitations as DR-Negotiate and SweetDeal. Agarwala

(2008) and Lamparter have done closely related work in the field of Web

Service partner selection. Their approach draws from utility theory in order to

evaluate offered services and goods. Utility Function policies are used in the

terms of the vocabulary that will be introduced in the next section. The SWRL

is used to express rules for the evaluation of offers; goods are described in

terms of the Resource Description Framework conforming to the DOLCE

upper level ontology (Mika, 2004). Conceptional this is probably closest the

approach the one used in this thesis for the evaluation of offers. While the

basic idea of using an upper level ontology is to have a proper tool to connect

7

manifold vocabularies, it is only as good as the level of acceptance of the

upper level ontology. However, at least four further approaches are

competing; namely, Suggested Upper Merged Ontology, Basic Formal

Ontology, General Formal Ontology and WordNet (Niles, 2001; Simon, 2004;

Heller, 2004; Fellbaum, 1898). A further back draw of this work is that it

demands already at the time of the description of offers to specify which

attributes of a service can later be evaluated and which are only part of its

context.

Another neighbouring stream of research, Market-Based Multirobot

Coordination, originated form the work of Stentz and Dias (Dias, 2000). The

driving concept is that a group of robots is given a task, which can be

decomposed into subtasks achievable by individuals. A Utility Function

defines for each robot the preferences for its resource usage as well as the

goals it wants to achieve. Furthermore, a mapping is defined between a Utility

Function for the whole team and the individual Utility Function of its members.

The interested reader will find a good overview at the field of Multirobot

Coordination in Dias (2005). However, coordinating a Multirobot system can

differ a lot form coordinating a Multi-Agent System. First, the tasks assigned

to robots vary usually from the tasks assigned to software agents. Second,

robots often deal with more restricted resources making it easier to apply the

market mechanism. And even more, the kind of data produced by sensors of

robots is of a different kind than the one software agent’s deal with (Zlot, 2004

p.11). Thus, many characteristics differ between mainly non-physical agents

and robots, making it difficult to transfer findings from this domain.

The more philosophical research stream of Holonic Multi Agent Systems is

inspired by Arthur Koestler (1967). The term “holon” is based on the Greek

word “holos” for “whole” and its ending “-on” refers to “part”. According to

Koestler a Holon is considered as a self-similar structure, i.e. consists of

several Holons and is itself part of a greater whole. Heavily stressed

analogues are such as a human being consisting of organs, which in turn

consist of cells, and is part of a family and wider social structures. The

concept of Holonic system design is proposed to integrate Weber’s and

Taylor’s hierarchical top-down structures with decentralized bottom-up

8

approaches (Warnecke, 1995). The work done by Vázquez-Salceda and

Dignum (2005), known as OMNI, is one example for a Holonic Multi-agent

System. They show in theory how complex tasks, such as organizing

conferences or organ transplantation, can be decomposed into simple tasks,

which can be carried out by software agents. However, only very few work

has been done to implement such systems; and it remains a vision, yet far

from being fulfilled (Gaertner, 2007).

3 Agents and their Policies
In this section, policies are introduced as a kind of behavioural specification.

In the first paragraph the concept of policies in general is in the focus. In the

following three paragraphs Action-, Goal-, and Utility Function policies are

reviewed successively. In the last paragraph of this section the application

side of Utility Function policies is examined.

3.1 The Concept of Policies
A vast amount of definitions on the concept of policy has been published in

recent years (Bearden, 2001; Dulay, 2001; Kagal, 2003). Policies play an

important role in Multi-Agent Systems since they are a kind of behavioural

guidance to determine the decision process and actions of agents. According

to Russel and Norwig (1995, p. 37-45) agents can have different levels of

behavioural specification. At the lowest level the capabilities as well as the

possible range of interactions are limited and hard coded. At higher levels the

agents pursue more flexible goals, specified in terms of policies. Kephart and

Walsh (2004) presented a unified framework for policies. They distinguish

three types of policies covering the range from the lowest level to the highest

level of behavioural specification: Action policies, Goal policies and Utility

Function policies. Kephart and Walsh’s work is based on states and actions,

what is quite common in Artificial Intelligence literature and the centre of

analysis in this thesis.

In general, a component of a

system (e.g. an agent) can

be characterized by being in

Figure 1

9

a state N at each moment in time. Typically, the state N is described as an n-

dimensional vector of attributes. Each attribute originates either directly from a

sensor or is synthesized from (multiple) inputs (Norwig, 1995, p.36). The

application of a policy will directly or indirectly cause an agent to make a

transition into a new state. Figure 1 exemplifies this by a scenario in which an

agent has the alternative between three actions in the current state N, each of

which leads to a possible new state. For instance, the state of an agent, that

controls a printer, can be characterized as N={number of queued jobs,

available paper, …} and the available actions M as M={accept further job, …}.

3.2 Policies for Reflex Agents
Action policies form the basis of simple Reflex Agents, along with Agents That

Keep Track of the History, as described by Norwig (1995, p.38). They dictate

the action that has to be taken whenever the knowledge base of an agent is in

a given state. Typically Action policies take the form of a rule, where the

condition specifies either a fact or a set of disjoint facts that trigger the rule.

The consequence of the policy is either the adding or removal of facts from

the KB. Since only the “delta” is defined, the state of the KB that will be

reached after the triggering is not defined explicitly. However, the designer of

the policy is assumed to know which state, using the action, will be entered.

Furthermore, the designer of the policy is assumed to consider this state to be

more desirable in comparison to states reached upon other rules. While this is

necessary to ensure that the agent is behaving as rational as it was designed,

it can be argued that the application of Action policies goes along with an

unnecessary over-determination (White, 2004). Numerous works on Action

policies for the design of agents have been put forward in recent years

(Lymberopoulos, 2002; Badr, 2004; Kephart, 2004, to cite just a few).

Nevertheless, higher levels of behavioural specifications are needed to enable

the mechanisms required for Market-based coordination.

3.3 Policies for Goal‐based Agents
Goal policies form the basis of Goal-based agents as described by Norwig

(1995 p.40; Kephart, 2004). While Action policies specify exactly what to do in

a current state of the KB, Goal policies specify either a single fact or multiple

facts that characterize a range of wanted states. Thus, policies of this type

10

divide the reachable state space in a desirable and in an undesirable one. In

other words, Goal policies are not fine-grained enough to express different

levels of preference, and every desired state is considered as equally

preferable. In the context of Goal policies the agent is responsible to compute

actions (generally by the use of IF – THEN statements) that cause the KB to

change from the current state into a desired one. While Action policies rely on

the designer to explicitly determine what he considered as rational behaviour

the Goal policy based agent achieves rationality by perusing a specified goal.

This frees from dealing with low-level functions and permits the designer to

have greater expressivity. Works put forward on Goal policies include such as

(Chandra, 2003; Grosof, 2003; Kephart, 2004; Skylogiannisa, 2007).

3.4 Policies for Utility Maximizing Agents
Utility Function policies codify the agenthood of Utility Maximizing agents

(Norwig, 1995 p. 42). They are expressed as functions that value states of the

KB. While Goal policies perform a binary classification into wanted or not

wanted states they determine a real-valued scalar, expressing the preference

for facts (representing the state of the world) in the KB of an agent. Since a

Utility Function can be modelled by specifying a set of disjoint goals and

specifying a preference relation between them, Utility Function policies can be

considered as a generalization of Goal policies from a conceptional point of

view (Kephart, 2004). However, such an approach is hardly feasible when

there is a large or even continuous state space. In these cases a more

compact expression of Utility Functions is needed. Analogue to Goal policies

the best state is not predefined at the time of the design of an agent, but is

determined during the runtime by selecting the most preferred but still

achievable state in a given situation. Goal policies do not allow a fine-grained

preference ordering between states making conflicts between multiple Goal

policies hard to resolve. On the other hand, Utility Function policies enable the

exact specification of tradeoffs; thus, the decision-making in potential conflict

situations. However, the challenge in the design of Utility Function policies is

to specify an n-dimensional set of facts on which preferences are imposed as

well as to find an optimal solution for the Utility Function. Work on Utility

11

Function policies includes such as (Keeney, 1993; Faratin, 1998; Thomas,

2000; Ermolayev, 2004; Agarwala, 2008).

3.5 The Benefit of Utility Functions
As pointed out Utility Functions are well known in the fields of economics and

artificial intelligence as a way of preference specification. The feature of a

Utility Function policy, that it maps states to a real-valued scalar will be

exploited in this thesis. The designer specifies the Utility Function expressing

the values of relevant states. In the next step, given that Utility Function, the

agent automatically chooses actions on the designer’s behalf.

Consider for example a consumer’s preference for a journey has been

expressed via a multi attribute function that covers preferred destinations,

length of stay, type of hotels and pricing. Different journeys occupy different

points in the space of attributes; typically the consumer selects the one with

the maximal utility, by him / herself. However, an automated agent that

receives a formalized representation of the consumer’s Utility Function could

select the preferred journey on behalf of the consumer, too. A related scenario

is examined by Zou (2003) and Ermolayev (2004). However, Zou uses Goal

policies that allow only determining whether an offer satisfies the given

conditions or not and lacking the information which of the offers is the best

one.

Given that most systems are dynamic in nature, due to changes in the

environment and other factors, the feasible actions with the highest

associated utilities are likely to shift during the runtime. Thus, agents with

Utility Function policies can perform optimization just in time enabling not only

more precise decision-making, but also a new type of applications (White,

2004; Das, 2007).

4 A Utility and Trading Model
In this section the basic theoretic concepts needed to fulfil the vision of

Market-based coordination are explored in more detail. In the first step it is

investigated how an n-dimensional state space can be mapped to a one-

dimensional utility value. In the next step it is discussed how to facilitate

12

sufficient expressivity and domain-independency for the mapping function on

the one hand side; while on the other hand side keeping the computational

effort at an acceptable amount. In the third step possible interpretations of the

concept of utility are surveyed and the reader is taken through an informed

decision process on which concept serves best for the end of this thesis. In

the last step the focus shifts from the states and their valuation to actions that

allow the transition from on state into another.

4.1 States, Attributes and Functions
As pointed out Utility Function policies allow the agent to evaluate possible

states of the KB. However, to keep the computational effort at a affordable

level not the complete state of the KB shall be evaluated, but only relevant

attributes characterizing the state of the KB. Which attributes are considered

to be relevant is determined by the policy owned by the agent. This gives the

designer the freedom to evaluate new statements from different perspectives,

depending on the needs of the agents.

Subsequently it will be referred to a set of statements that describe a potential

state of the KB as context C of the attributes A. Thus, a set of attributes

!

A = {A
1
,A

2
,...,A

n
} is a subset of a context C. The technical details of the

mechanism that determines which parts of the context C are considered as

attributes is examined later in chapter 9. The values

!

a j of attribute

!

A j can

either be discrete

!

a j " {a j1,a j 2,...,a jm} or continuous

!

a j " {min j # a j #max j},

as suggested by Faratin (1998). While discrete attributes allow the valuation

of properties such as the ability to print in colour or not; continuous attributes

can be used, for instance, to express a preference for a low number of

queued jobs. The possible attribute space S is an n-dimensional set

characterised by the Cartesian product

!

S = A
1
" A

2
" ...A

n (Agarwala, 2008).

Consequently, Utility Function policies that map the attribute space, within a

context, to a real valued scalar are multiple parameter functions (Keeney,

1993 p.219). A concrete set of attributes is denoted by

!

s" S .

A preference structure is usually constructed by a transitive, reflexive and

complete binary relation

!

" (Keeney, 1993 p. 141). Transitivity refers to the

notion that if a state x is preferred to a state y and a state y is preferred to a

13

state z then state x it preferred to the state z, too. This can be formalized, in

regard to the concepts used in this thesis, as

!

"sx,sy,sz # S : (f (sx) $ f (sy))% (f (sy) $ f (sz))& f (sx) $ f (sz) . Reflexivity refers to

the notion that every set of attributes s is at least as much valued as itself

!

"s# S : f (s) $ f (s) . Completeness states that for every pair of attribute sets

!

"sx,sy # S it is either the case that

!

f (sx) " f (sy) or

!

f (sy) " f (sx) . The structure

of preferences can be inferred from an evaluation function

!

f : S" R, that

maps a state to a real-valued scalar, where the condition

!

"sx,sy # S : sx $ sy % f (sx) $ f (sy) holds.

4.2 Additive Utility Functions
In the previous paragraph a most general form of the function

!

f (S) that maps

each possible combination of attributes to a real valued scalar has been

introduced. However, the number of possible attribute combinations grows

exponentially with respect to the attributes and their values (Keeney, 1993 p.

283). Consider for example that there are 5 attributes with 6 discrete possible

values; then the size of the possible attribute space S is

!

5
6=15625. While

such an approach is theoretically possible it is practically not feasible.

Fortunately, in many practical situations the attributes are mutual

independent, also known as additive severability (Chevaleyre, 2004). The

assumption of additive severability does hold if and only if there exist

functions

!

f
1
, f

2
,..., fn such that

!

f (a
1
,a
2
,...an) = f

1
(a
1
) + f

2
(a

2
) + ...+ fn (an). Relying

on additive severability improves the compactness and manipulability by

decomposing

!

f (S) into multiple one-dimensional functions. The concept of

additive Utility Functions is widely used in the field of Multi-Agent Systems

and is, in depth, explored by Faratin (1998) and Chevaleyre (2004).

4.3 Cardinal versus Ordinal Utility Theory
After lining out the theoretical details of Utility Functions, the nature of the

utility value itself has to be closer examined. In economics two different

notions of the utility concept can be distinguished; the ordinal utility concept

and the cardinal utility concept (Keeney, 1993 p. 26). The ordinal utility

concept captures only the ranking and not the strengths of preferences. On

the other hand in cardinal utility theory the magnitude of utility differences is

14

treated as a significant quantity. When an ordinal utility notion is used

differences in the valuations carry only the information of the preference

ordering between the members of a choice set (i.e. the different sets of

attributes whose utilities should be compared). Thus, ordinal utility theory can

only be used to determine which of the alternatives is the best one

(Oberender, 2004 pp. 79).

However, in many cases the information which feasible state is the best is not

adequate but the knowledge weather even the best option is sufficient is of

use, too. The cardinal utility concept carries the objective utility of a concrete

set of attributes; thus, allows to decide whether a set of attributes is describing

something whose utility is big enough. In particular, the cardinal utility concept

allows decision making without the need to construct further options to

compare with that are necessary if an ordinal utility concept is used. Even

more important however, the cardinal utility concept allows the comparison of

levels of satisfaction across different agents; if a particular item gives one

agent 4 utility units but another gets 2 from the same thing, the item described

by a set of attributes is said to give the one twice as much as the other one

(Oberender, 2004 pp. 109).

This sort of comparison is of great use in Multi-Agent Systems when it comes

to the evaluation of how well the system is doing overall. Under the framework

of utilitarianism actions are judged by their contribution to the reaching of the

overall goal of the system. The concept of cardinal utility provides a way to

search for what has been called by the Philosophical Radicals the “greatest

good for the greatest number” (Hardin, 1968); thus, to search for a state in

which all goals of all agents are best satisfied. This ability to compare utilities

between individuals runs into ethical problems in the case of human agents.

However, it shall be assumed that these ethical problems are not of

importance in the case of software agents. For a further investigation of

different notions of utility, in particular on the widely used disjunction between

the total and average utilitarianism, see Sen and Williams (1982).

15

4.4 The Auctioning Process
In the previous paragraphs a mechanism that is potentially capable of

determining the value of actions in terms of utility, associated with the state

reached upon the application of an action, has been introduced. However, a

negotiation mechanism is needed if the demand for something is beyond the

limitations of a finite set of available resources. A negotiation mechanism can

be seen as a protocol prescribing how agents interact to determine a contract

granting one agent access to a resource and excluding another one. Auctions

are a type of those protocols as characterized by McAfee and McMillan

(1987): “An auction is a market institution with an explicit set of rules

determining resource allocation and prices on the basis of bids from the

market principals.” The most common encountered types of auctions are the

English auction, the Dutch auction, the First-price Sealed-bid auction and the

Second Price auction. A general introduction to auction theory and surveys of

several different types of auctions is provided by Wolfstetter (1996).

This thesis uses the mechanism of the Second Price auction, also known as

Vickrey auction, in which bidding agents submit their bids without knowing the

bids of the other agents. The highest bidding agent wins, but the price to be

paid is the one in the second highest bid. The Vickrey auction belongs to the

category of the Vickrey Clarke-Groves Mechanism (Clarke, 1971; Groves,

1973). The idea of this mechanism is that each agent in the auction pays the

opportunity costs that their presence puts on all the other agents. Payments

between agents are done by the use of Util’s. Whereby, the valuation function

!

f (util) = util neglects the diminishing marginal utility of an additional Util for

the sake of simplicity and to use the valuation derived by a Utility Function as

the willingness to pay. Consider for example, agent A auctions one printing

job, and two agents are interested in printing. Agent B wants to print and is

willing to pay 10 Util’s for it. Agent C wants to print and bids 6 Util’s to get that

job done. In the first step, the outcome of the auction is decided in favour of

the highest bidder: the printing opportunity is allocated to agent B. In the next

step the opportunity costs are considered that the winning agent imposes on

the other bidder(s) to decide the payment. Currently, agent C has a utility of 0

16

and agent B has a utility of 10. If agent B had not been bidding, agent C would

have won and had a utility of 6; thus, B pays 6 Util’s.

Vickrey auctions have the properties of self-revelation / incentive compatibility

and ex-post efficiency (MacKie-Mason, 1995). Self-revelation is given if no

incentive exists to collect information about competitors and to lie is present.

Even more, in the case of Vickery auctions each bidder maximizes its utility

upon bidding (revealing) its true valuation, freeing this thesis from the need of

further Game-theoretic enquiries on optimal bidding strategies. Ex-post

efficiency means that the winning agent is the one with the highest valuation.

5 The Semantic Web
In this section the medium in which the agents operate in is investigated.

While there are a vast amount of “hands-on” publications about the semantic

web (Burners-Lee, 2001; Hendler, 2001), the approach followed here will be a

more theory oriented one. In the first step the vision of the web of data is

shortly outlined. In the following paragraphs the building blocks of the

Semantic Web are introduced layer after layer. In the last paragraph the

reader is made familiar with the distinctions between domain and application

ontologies used in this thesis.

5.1 The Vision

Originally the Web was envisioned as

a set of tools for the representation of

relationships between named objects

(Berners-Lee, 1999, p.41). Now, the

main aim of the Semantic Web

initiative is to fulfil this vision. The

collaborative efforts aim at the

development of technologies and standards, which help machines to

understand the meaning of data. The guiding idea is having data linked in

such a way that it can be retrieved and reused across platforms, applications

and communities (Berners-Lee, 1998, p.9; Koivunen, 2001). To meet these

Figure 2

17

goals, in a collaborative effort led by the World Wide Web Consortium, a set

of layers has been designed (figure 2).

5.2 Unicode and URI
At the bottom, Unicode and URI follow the features of the existing World Wide

Web. Unicode is a standard allowing computers to consistently represent and

manipulate text. A Universal Resource Identifier is a string of characters to

identify or name a resource. Whereby a resource can be everything; from an

object, only existing in the WWW, to a real human person (Ding, 2005). The

usage of URI is important for distributed systems like the WWW, since it

provides integration of all resources (Dürst, 2007).

5.3 The XML layer
At the core level is the XML layer with its XML Namespace and XML Schema,

providing the syntax for the Semantic Web. The primary purpose of XML is to

facilitate the encoding and serialization of structured data. XML is classified as

an extensible language as it allows its users to define their own elements

(Bray, 2006; Dürst, 2007). XML namespaces allow users to provide

exclusively named elements and attributes in an XML document. An XML

document can contain element or attribute names from more than one XML

vocabulary. If each vocabulary has been given a namespace then the

ambiguity between identically named elements or attributes can be resolved.

XML schema can be used to express a set of rules to which an XML

document must conform in order to be considered valid according to that

schema (Fallside, 2004).

5.4 The Metadata Level
On the metadata level RDF and RDFS allow the description of resources. The

Resource Description Framework is a specification designed for representing

metadata about resources in a graph form (Manola, 2004). However, RDF

has become a general method of modelling information through a variety of

syntax formats.

The normative syntax for serializing RDF is XML in the RDF/XML form, but

other serialization formats, such as Notation3 that will be discussed in section

7 in detail, are used as well. The RDF data model is based on triples in the

18

form of “subject-predicate-object” expressions. Hayes (2004) defines the

formal semantics of RDF. As pointed out Resources can represent everything,

from websites to people. All elements of a triple are resources with the

exception of the object and subject that can be also literals. Literals can be

either plain literals or typed literals using XML Datatypes as defined by Biron

(2004). Multiple triples together form a RDF graph. A subject or object without

URI is called blank node and can be viewed as a graph scoped identifier that

cannot be directly referenced from outside the document. RDF reification

allows the dissembling of a triple to its parts and to use these parts as objects

in other statements; in other words, the citation of graphs within graphs.

Reification is the expression of RDF triples by the use of RDF in such a way

that the language becomes treatable by itself (Brickley, 2004). This

mechanism allows looking at a RDF graph and reason about it, using RDF

tools (Berners-Lee, 2004). Similarly to a XML document, a RDF document

can have a schema (RDFS) to conform with.

RDF Schema extends the RDF vocabulary to allow the description of

taxonomies. Furthermore, it extends the definitions of some RDF elements

(Brickley, 2004). By the use of RDFS, all resources can be typed to groups

called classes. Such typed resources are instances of a class. Classes are

resources, too; thus, they can be described by properties and identified upon

URI’s. The set of instances of a class is called extension of a class; whereby

two different classes can share the same instances. The properties in RDFS

are relations between subjects and objects in RDF. Properties may have a

defined domain to declare the class of a subject in a triple using this property

as predicate. Properties may also have a range to declare the class or XML

Datatype of the object in a triple using this property as predicate.

5.5 The Ontology level
Both RDF and RDFS provide basic features of knowledge representation, but

more modelling primitives are needed. The Web Ontology Language OWL

enables the semantic specification and conceptualization of different

application domains. The aim of OWL is to bring the expressiveness of

description logics to the Semantic Web. The W3C OWL recommendation

19

includes the definition of three variants of OWL with different levels of

expressiveness (Bechhofer, 2004).

OLW Light provides classification hierarchies and simple constraints, such as

0 and 1 cardinality. Originally it was hoped that it would be simpler to provide

tool support, allowing a quick migration path for existing systems

(McGuinness, 2004). OWL Light is the simplest OWL language and

corresponds to description logic SHIF (Eiter, 2004 p. 82).

OWL DL is intended to support a maximum of expressiveness possible, but

still retains computational completeness (all conclusions are guaranteed to be

computed) and decidability (all computations will finish in finite time). OWL DL

corresponds to description logic SHOIN (Eiter, 2004 p. 84). The language

variant includes all OWL constructs, but they can be used only under certain

restrictions. For example number restrictions are not allowed to be placed

upon properties that are declared to be transitive.

OWL Full is designed to utilize the full syntactic freedom of RDF and RDFS. It

is funded on semantics different from OWL Light and OWL DL; it has no

expressiveness constraints, but does no longer guarantee the properties of

computational completeness and decidability (McGuinness, 2004). For

example, in OWL Full resources can be treated simultaneously as a class and

as an individual.

5.6 Two Ontologies for One Purpose

In the previous

paragraphs of this

section the

technical

underpinnings for

a formal

representation of

knowledge as a

set of resources and the relationships between those resources have been

introduced. Such formalism can be used to reason about the properties of a

Figure 3

20

domain, and may be used to define a domain. In this paragraph, two, by their

use distinct, types of ontologies are investigated; the first one, domain

independent application ontologies; the second one, domain ontologies.

Generally speaking the application ontologies, used in this thesis, are in the

namespace “org”, the domain ontologies, used in the examples, are in the

namespace “ex”.

The application ontologies describe how mathematical functions and policies

have to be made up so that an inference engine is able to process them.

These application ontologies are designed only for one application, but are

domain independent in such a way that the application itself is not restricted to

one specific domain to deal with.

On the other hand side domain ontologies model a specific domain, or part of

the world. Domain ontologies define the particular meanings of the classes

and predicates as they are apply to a domain. Thus, domain ontologies are

used, in this thesis, to describe auctions, offers, and bids as well as states of

the KB of agents.

6 The used Platform
In this section the building blocks of the agents, used in this thesis, and the

platform on which they operate on are described. In the first step the idea

behind the platform is shortly presented. In the next step the reader is invited

to have a look under the hood of the Platform, on FIPA standards and the

Jade technology. In the last step the layers of the Ubiware agent are

investigated.

The reader is asked to recognize that, while this section is not in the centre of

research in this thesis, this section is necessary to understand the concepts

built on top of this platform, introduced later in this thesis.

6.1 The Vision of the Ubiware Platform
The driving idea behind the Ubiware Platform is that a software agent can

represent every component of a computing system. The realization of such a

vision requires a flexible core consisting of autonomous components (Bai,

2006; Terziyan, 2007). Social level characterisation of MAS and ontological

21

approaches to coordination are two important research directions, which try to

deal with the question of the balance between the freedom of the individual

agent and the predictability of the whole system. The social level

characterisation addresses the need for understanding the impact of the

organisational context on the individual agent as well as the emergence of

social patterns from individual behaviour (Vázquez-Salceda, 2005 pp. 309).

The ontological approaches focus on enabling agents to communicate and

reason about actions, plans and knowledge (Tamma, 2005; Boella, 2004).

The core of the UBIWARE Platform is based on findings of both research

directions and designed to integrate them (Artem, 2007; Terziyan, 2007).

6.2 FIPA and Jade
The Foundation for Intelligent Physical Agents (FIPA) is an international non-

profit organization whose purpose is to develop specifications of technologies

that ensure interoperability within and across platforms. The FIPA 97

specifications declare normative rules that allow agent societies to operate,

communicate and to be managed (Bellifemine, 2001 p. 90). The Agent

Management System provides “white-pages” services and life-cycle

management. The Directory Facilitator provides “yellow-pages” services to the

agents. The Agent Communication Channel ensures the interoperability within

and across platforms. However, the FIPA specifications are not intended to be

a complete blueprint for building Multi-Agent Systems. For example, the FIPA

specifications do not advice how to model existential aspects of the agents

(Charlton, 2000).

The JADE Framework is an open source software framework that supports

the development of interoperable multi-agent systems in complaint with the

FIPA specifications (Bellifemine, 2001 p. 93). Thus, JADE implements the

Agent Management System (AMS), the Directory Facilitator (DF) and the

Agent Communication Channel (ACC). The agents are realized as Java

threads and come with a FIPA-compliant Global Unique Identifier for each

individual agent on the platform. The platform can be grouped into containers

and distributed on several hosts; furthermore, mobility of the agents between

the containers is supported.

22

6.3 Layers of a UBIWARE Agent

The UBIWARE Platform

is build on top of JADE

and is the successor of

the Smart Resource

Platform. The UBIWARE

agent is an extension to

the JADE agent in such

a way that it adds three layers: Reusable Atomic Behaviours, Believe Storage,

and a Behavioural Engine, see figure 4 (Terziyan, 2007).

The first layer consists of the Reusable Atomic Behaviours (RAB’s), pieces of

Java code implementing basic functions. The Reusable Atomic Behaviours

incorporate the perceptors and actors of agents as described in (Norwig,

1995, p. 17). Reusable in this context means that these code blocks can be

applied across different agents and different scenarios in different

applications.

The second layer of an agent is the Believe Storage. The behaviour of an

agent is determined by the roles it enacts and believes it has about the world

(i.e. KB), both stored in the believe storage. Possible examples of roles are

the Platform-starter, Seller or Buyer. While one agent usually plays several

roles different agents can play one role. The roles are encoded in the

Semantic Agent Programming Language. S-APL uses the RDF data model,

i.e. everything is structured as a set of “subject-predicate-object” triples.

These triples represent the knowledge of agents and specify the conditions

and parameters for the execution of the RAB’s necessary for playing a role

(see more in the next section).

In the third layer there is the Behaviour Engine. The engine consists of the

agent core and the two behaviours “Live” and “Assign Role”. The Live

behaviour iterates through all behaviour rules, checks them against existing

believes and executes the appropriate rules. The enacting of a rule usually

includes the execution of a set of actions, such as adding and removing

Figure 4

23

believes and the carrying out of RAB’s. The Assign Role behaviour phrases

the S-APL documents and loads them into the believe storage. Furthermore, it

registers new roles with the JADE DF agent. The Assign Role behaviour has

the duality of being a part of the behaviour engine as well as being a RAB at

the same time since, the creation of an agent needs at least one behaviour

model and all later invocations of Assign Role are specified in some behaviour

models.

The UBIWARE Platform allows the agents to access behaviour models either

from a central repository or from a distributed environment, like the World

Wide Web. This approach to updating of the behaviour models brings multiple

advantages. At the one hand side not pre-programmed roles can be loaded at

runtime. At the other hand side the roles can easily be changed and updated.

Corresponding to the behaviour models the platform enables its agents to

access RAB’s during runtime. Thus, if the enacting of a role prescribes to

execute a RAB the agent is missing, the RAB can be downloaded from a

repository (Artem, 2008).

7 The Semantic Agent Programming Language
In this section the language used by the agents is introduced. While the first

and the second paragraph follow the classic distinction between Knowledge

and Rule Base in Knowledge Based Systems, the reader will recognize that

such rigid distinctions are not necessary, in the case of the Ubiware platform.

Since the agents are not isolated but only one part of a large computing

environment, the next paragraph gives some insights on question of the

integration of the agents. In the last paragraph build in functions are

introduced, that will be widely used in the following sections.

Likewise to the previous section this section is not in the research focus of the

author. However, to understand the subsequent steps, made in this thesis,

this section is crucial. Since the following paragraphs are mainly based on

Katasonov (2008), quotations are only made when other sources are used.

24

7.1 The Knowledge Base
The Semantic Agent Programming Language is the language used for the

Production System (i.e. Behavioural Engine) in the UBIWARE agents. S–APL

is based on the syntax of Notation3. N3 allows RDF to be expressed, but is

compared to the dominant RDF/XML syntax more compact and better human

readable. Notation3 is not an official W3C Recommendation, yet; however, a

complete specification is given in the Design Issues of the W3C (Burners-Lee,

2006). In line with the RDF data model the atomic sentences in S-APL are

rdf:Statement’s. Please note that other authors refer to rdf:Statement’s as

believes (Katasonov, 2008). However, besides the different naming,

statements as well as believes refer to the same concept.

Each statement has a subject-, predicate- and an object part. Due to this

structure statements are also called “triples”. Another useful way to think

about RDF is as a graph, in which objects and subjects are nodes, connected

by a predicate as edge. An example for an RDF statement is:

<http://example.com/socrates>

<http://www.w3.org/2000/01/rdf-schema#type>

<http://example.com/Human>.

URI terms can be abbreviated using namespaces; the empty namespace is

used as default namespace. However, S-APL is not restricted to the use of

URI’s but allows literal terms in the subject as well as in the object part of the

triples.

@prefix ex: <http://www.example.com#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

ex:socrates ex:hasAge “32”^^xsd:int.

While in the case of standard RDF every statement is treated as a global

truth; S-APL allows the quotation of statements. In addition to the concept of

reification in RDF, the quotation of statements is done by the use of

containers, either in the subject- or in the object part of a statement.

Syntactically, a container begins with an opening bracket “{“ and ends with an

closing bracket “}”. Consider for example:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

25

{ex:socrates rdfs:type ex:Human} :accordingTo ex:tim.

The quotation of formulas by the use of containers restricts the validity of a

statement to its container. Thus, statements have any meaning only inside

their containers. The most general root container, which is not cited by any

other statement, is referred to as “G”. The citation of containers allows the

construction hierarchies, with the general container G as their root. Whereby,

every container has to be linked to the root container through a hierarchical

chain to give meaning to it in respect to G. In the graph model of RDF a

container is a node that holds instead of an URI or a literal a complete graph

on its own. As shown in the example above, a container allows the distinction

between what an agent believes to be true and what someone else, including

other agents, does believe.

7.2 The Rules
The most important aspect about the concept of quotation and container is

however, that their use allows to add statements to the root G under certain

conditions; thus, the constructions of Production Rules in the form of IF -

THEN statements. More precisely, is the content of a container found in the

root Container G and is the container connected, as a subject, with another

container via an implication predicate, then the content of the object container

is added to the root container of the KB as well. For the purpose of

implications S-APL uses the concept of variables as applied in N3Logic

(Berners-Lee, 2008). Variables are placeholders that are bound in the THEN

part (and all its nested sub-containers) of a Production Rule, according to the

matches in the IF part. The central idea is that, given the variables, a

Production Rule is a relationship between two graphs within containers.

Production Rules are expressed in S-APL using the predicate “=>” as a short

for <http://www.ubiware.jyu.fi/sapl#implies>. They are inferred only if the

implication predicate => is part of the root container G. As in the programming

praxis there are frequently occurring exceptions it should be noticed that

implications are although inferred if they are in a container that is connected

to the general context by the statements {…} sapl:is sapl:Rule or {…}

sapl:requires *. The IF - part in the subject of the Production Rule is called

antecedent graph, and the THEN - part in the object is called consequent

26

graph. The domain as well as the range of the implication predicate “=>” is

sapl:Container. In the simplest case the implication is a one shot rule, and

together with its antecedent graph removed from the believe storage after the

rule has fired, while the consequent graph is added to the root container. The

following example illustrates this in greater detail:

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

{?x :accordingTo ex:tim} => {?x sapl:is sapl:true} .

If a statement matches the IF - part of the rule, such as the one above, the

container bound to the variable ?x is added to the root container G upon the

statement in the THEN part ?x sapl:is sapl:true. In many situations however,

not only one match for a variable is possible. To allow the implication to be

inferred for all possible matches in the IF - part of a Production Rule the IF -

part has to be wrapped into the container {} sapl:All ?x. Whereby ?x is the

variable for which all possible matches shall be considered. However, the

sapl:All ?x construct is still not a persistent rule; but does only guarantee that

all matches in the IF - part will also be treated in the THEN part; after such a

rule has fired it gets removed in the same way as the rule in the previous

example. To build a persistent rule the implication has also to be wrapped into

the container {…} sapl:is sapl:Rule. Consider the following example.

{{{ ?x rdfs:type ex:Human. } sapl:All x?.

}=>{

?x rdf:type ex:Mortal.

} } sapl:is sapl:Rule.

Special kinds of rules are the entailment rules necessary for the RDFS / OWL

vocabulary which can be expressed analogue to the previous example. The

following formula expresses the semantics of the rdfs:subClassOf property as

determined by the rdfs9 entailment rule (Hayes 2004). The construct sapl:I

sapl:doNotBelieve {…} in the antecedent graph is used to ensure that the

implication is only inferred if the consequent is not part of the agents KB; thus

to avoid unnecessary computations.

{{ ?S1 rdfs:subClassOf ?O1.

?S rdf:type ?S1.

27

sapl:I sapl:doNotBelieve {?S rdf:type ?O1}.

} =>{

?S rdf:type ?O1.

}} sapl:is sapl:Rule.

In combination with the statements describing the relationships between the

concept – called ontology - of being human and being mortal

ex:Human rdfs:subClassOf ex:Mortal.

it is possible to infer further statements about instances that are members of

the class ex:Human (Manola, 2004), such as:

ex:socrates rdfs:type ex:Mortal.

Reminding that quoting allows one to express relationships between RDF

graphs within different containers, for example stating that a given RDF graph

has the provenience of a particular document. Every RDF graph is composed

of multiple statements. A quoted statement is enclosed in brackets “{“,”}”,

representing a container.

7.3 Integration with existing infrastructure
The World Wide Web is designed as a mapping between URIs and the

information gained when such URIs are resolved by the use of appropriate

protocols (Rosenfeld, 2002 p. 56). In S-APL a information resource is

identified by a symbol, which is either pointing to a local repository or a URI.

:missingModel is a property that causes a RDF graph corresponding to the

resource provided as object to be added to the container given as the subject.

In order to access a S-APL script, named hello.sapl, from the local repository

and add it to the root container of the agent’s KB :missingModel is used in the

following manner:

sapl:I :missingModel hello.

Please note that the resource sapl:I is a synonym for the agent ID. The

following example accesses a S-APL script by resolving its URI and stores it’s

content to the container with the ID “C”:

C :missingModel <http://www.example.com/hello.sapl>.

28

The advantage of loading RDF graphs to a special container is that it allows

rules to access the Web, and to check the content of RDF documents, without

loading them into the general context and believe everything stated in them.

Since the predicate :missingModel has no predefined meaning its functionality

has to be determined first. The first step is, as previously pointed out, the

construction of a Production Rule, with ?container :missingModel ?model in

the antecedent graph. In the consequent graph the invocation of a Reusable

Atomic Behaviour (RAB) provides the desired functionality of loading the

script to a container. Note that analogue to implications RAB’s are only

scheduled for execution if they are part of the root container of the agents

believes storage. After the RAB has been scheduled for execution its

representation, in the root of the KB, gets removed. The following example

depicts the invocation of the BeliefsLoadBehavior with a simple configuration.

@prefix java: <http://www.ubiware.jyu.fi/rab#>.

@prefix p: <http://www.ubiware.jyu.fi/rab_parameters#>.

{

?container :missingModel ?model

}=>{

{sapl:I sapl:do java:ubiware.shared.BeliefsLoadBehavior}

sapl:configuredAs {

p:saveTo sapl:is “?container”^^xsd:string.

p:inputFromFile sapl:is "?model.sapl".

}}

While the “java:” namespace is used to determine that the object is a RAB;

the following string indicates the class path, i.e. where the java code can be

found. The “p:” namespace in the configuration part of the RAB defines

parameters, such as the container to whom the statements should be added

or the location of the file that contains the relevant data.

7.4 Build in functions
While N3 properties can be used simply as ground facts it is also necessary to

have the possibility that they can be calculated, too. Literals can be evaluated

against the agent’s engine and assigned to a variable. These built-in functions

29

can be used to provide a variety of functionality such as string matching and

mathematical functions as used in the next section. The following triple

calculates the length of the string bound to the variable provided to the

function in the object and binds the result to the variable in the subject part of

the triple:

?y sapl:expression “length(?x)”.

8 Modelling Mathematic Functions
In this section the

functions for the

evaluation of attributes

are introduced. The

application ontology

used for the functions is

widely inspired by the

work done by Agarwala

(2008) in terms of the

DOLCE ontology. To acknowledge the different types of attributes (i.e.

discrete and continuous ones) not only one function is introduced, but three.

In the first paragraph Discrete functions are introduced. In the next paragraph,

Linear functions are introduced. In the last paragraph Polynomial functions

are introduced. To give the reader a broad overview on the design of the

functions figure 5 shows their ontology in graph form.

8.1 Discrete Functions
Functions of the rdfs:type

org:DiscreteFunction are

connected to a set of

individuals of the rdfs:type

org:Point, by the predicate

org:hasPoint. Each

individual point is connected

via the property

Figure 6

Figure 5

30

org:hasAttribute to a org:Attribute, and via the datatype property org:hasUtility

to one utility value of the type xsd:double. Subclasses of org:Attribute can be

used to define which values a specific attribute can adopt. Axiom A.1 and A.2

formalize this notion.

!

org :Point " owl :Thing#=1 org : hasAttribute.owl :Thing

#=1org : hasUtility.xsd : double
 (A.1)

!

org :DiscreteFunction " org :Function#>0 org : hasPoint .org :Point (A.2)

In the next step rules are required to evaluate the introduced concepts and

their semantics. The formula below checks the set of points, of a discrete

function f, to find the utility value for a given attribute value; thus, it declares

how the value of a attribute can be determined.

{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:DiscreteFunction;

 org:hasPoint ?p.

 ?p org:hasAttribute ?ar;

 org:hasUtility ?u.

 ?a = ?ar.

} => {

 sapl:I :calculate {?a ?f ?u}.

}

In the formula above the testing whether a given fact satisfies the attribute

defined by a point is done by a simple equals-relationship. However, different

types of attributes require different rules of entailment. Thus, this predicate

should be altered according to the type attribute that is evaluated. While in

some cases simple string matching is sufficient, other attributes demand a

test whether at least the rdfs:subclass-relationship for the type of the attribute

holds. The complete formula used in the prototype can be found in Appendix

A.1. A in depth discussion, about further possible entailments, for concepts is

given by Bernstein and Kiefer (2006).

Ontologically modelling Functions is a relation between an attribute, an

instance of the class org:Function, and a valuation to which the later maps the

31

former. To represent such a three value relation the container in the statement

sapl:I :calculate _:containerID has in its subject part the attribute, in its

predicate part the Function URI, and in its object part the valuation of the

subject by the predicate. The construction of this container is done in the

THEN-part of the rule by the statement sapl:I :calculate {?a ?f ?u}.

8.2 Linear Functions

Linear functions allow an

ordering between given

attribute values, of the

type xsd:double, to

specify a continuous

range. They are an

extension of the already

introduced discrete

functions in that way that

points with neighbouring

value attributes are connected by a line to make up a linear function. For each

pair of points

!

(x
1
,v
1
) and

!

(x
2
,v
2
) as well as a given attribute value x, a utility

value is calculated by the equation:

!

u = [(v
2
" v

1
) * (x " x

1
)]/(x

2
" x

1
), for

!

x
1

< x " x
2. Axiom A.3 formalizes the ontological status of the class

org:LinearFunction.

!

org : LinearFunction " org :Function#>1 org : hasPoint .org :Point (A.3)

To evaluate attributes with linear functions the build in math predicates are

exploited.

{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:LinearFunction;

 org:hasPoint ?1p;

Figure 7

32

 org:hasPoint ?2p.

 ?1p org:hasAttribute ?1v;

 org:hasUtility ?1u.

 ?2p org:hasAttribute ?2v;

 org:hasUtility ?2u.

 ?1v < ?a.

 ?2v > ?a.

 ?v1v sapl:max ?1v.

 ?v2v sapl:min ?2v.

 ?1v = ?v1v.

 ?2v = ?v2v.

 ?u sapl:expression "?1u+(?a-?1v)*((?2u-?1u)/(?2v-?1v))".

} => {

 sapl:I :calculate {?a ?f ?u}.

}

The formula, given above, calculates the utility u of a given attribute value v

and ensures that only neighbouring points are taken into account for the

calculation. The adding of the result of the function, to the KB, is analogue to

the last paragraph. The complete formula, used in the prototype, is given in

Appendix A.2.

8.3 Polynomial Functions
In addition to the

previous paragraphs

functions for continuous

facts, such as the float

datatype, can be

modelled by means of

polynomial functions. The

class

org:PolynomialFunction

denotes functions constructed from one or more variables and constants

Figure 8

33

using the operations of addition, subtraction, multiplication, and raising to

constant non-negative integer powers. In general it can be written

!

f (x) = a
1
x
p1 + a

2
x
p2 + ...+ anx

pn , where

!

a
n
 and

!

pn represent parameters that

have to be given to create the function.

The ontology of polynomial functions is defined as follows. Instances of these

function are connected to a set of terms by the predicate org:hasTerm; each

individual term has exactly one multiplicand and one exponent. Axiom A.4 in

conjunction with A.5 formalizes this notion.

!

org : PolynomialFunction" org : Function#org : hasTerm.org :Term (A.4)

!

org :Term " owl :Thing#=1 org : hasMultiplicand.xsd : double

#=1org : hasExponent.xsd : double
 (A.5)

The following formula calculates the sum of all terms specified for a

polynomial function as well as the value of the terms itself. The adding of the

result of the function is done likewise to the previous formulas. The complete

version, used in the prototype, can be found in Appendix A.3.

{{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:PolynomialFunction;

 org:hasTerm ?p.

 ?p org:hasMultiplicand ?w;

 org:hasExponent ?e.

 ?x sapl:count ?p

 } sapl:All ?p.

} => {

 { ?u sapl:expression "?w*pow(?a,?e)"

 }=>{ ?p :hasResult ?u}.

 { * :hasResult ?zu.

 ?y sapl:count ?zu.

 ?y = ?x.

 ?h sapl:sum ?zu.

 }=>{

34

 sapl:I :calculate {?a ?f ?h}

}}.

9 Mapping a Graph to a Value
Preferences of an agent towards states of its Knowledge Bases can be

expressed upon Utility Functions that map a set of RDF statements,

describing the current state of its KB, to a real-valued scalar. These Utility

Functions provide a view on the world, from the perspective of the agent in

the way that they reduce the complexity of the state of the world, of which the

KB of the agent is a model of, to a one-dimensional utility valuation. Such

utility valuations can be used to compare two states of the world. Thus, the

comparison of utility valuations, for states of the KB before and after an

hypothetical action indicate the value of an action for the agent.

In the first paragraph of this section the application ontology for the

declaration of the statements describing the states of the world is presented.

In the next section the makeup of multi attribute functions, that evaluate the

state of the world, is introduced. After that the formula for the evaluation of

multi attribute functions is presented. In the last paragraph it will be explored

how already existing complex functions can be refined, via the concept of

inherence.

9.1 A Makeup for States Of The World
In this paragraph a makeup

for states of the world is

introduced. Individual states

are made up by the class

org:Thing. Each state has

exactly one container

associated, describing what

the state is, as formalized in

by axiom A.6. For example

consider a printer controlled

by the agent; the description

Figure 9

35

container can host information about the used paper, about the availability of

colour or the number of queued print jobs.

!

org :Thing" owl :Thing#=1 org : description.sapl :Container (A.6)

9.2 Modelling Complex Functions

In the next step the definition of

multi attribute functions itself is in

the focus. Such functions map a

set of RDF statements to a real

valued scalar. Is the scalar

interpreted as a utility valuation

those complex functions can be

used to gain information about the

level of satisfaction with a state of

the world.

 Multi attribute functions are

modelled not as instances of a

class, but as subclasses of the

class org:ComplexFunction. This is

because such a function is used to

be matched not only against one single state, but to specify a class of states

to whom it can by applied to; i.e. it specifies which individual states are

instances that can be evaluated. The specification, which states satisfy the

condition of evaluation, is done by a container connected to the class

org:ComplexFunction upon the predicate sapls:Restriction. The container

hosts those statements that have to be part of the state description to be

evaluated by the complex function. The namespace “sapls” refers to sapl –

schema; thus, the specification of triple patterns and “Restriction” to the notion

that the statements hosted in the restriction-container are the minimal

requirement for matching the schema (Terziyan, 2008). Consider the graph in

the upper part of figure 10 as an example. The description connected with the

Figure 10

36

state in figure 9 satisfies the restriction, since all required statements, in the

schema, are part of the description.

!

org :ComplexFunction " owl :Thing#=1 sapls :Re striction.sapl :Container

#=1org : hasAssociatedFunctions.sapl :Container
 (A.7)

However, such a definition of a schema allows only to search for those states

for which the Complex Function applies, but does not contain any information

about how to valuate the statements in the description of a state. Thus, a

further container is connected, to org:ComplexFunction, by the predicate

org:hasAssociatedFunctions (axiom 7). This container has three purposes;

first, those parts of the description are identified that are attributes; second,

the identified attributes are connected to a real-value number upon the

predicate org:hasWeight to determine their relative weight; third, the identified

attributes are connected to an instance of org:Function, as introduced in the

pervious section, that is used for their valuation. Consider the example in the

lower part of figure 10.

9.3 Evaluating Complex Functions
Containers, such as those used for the description of states as well as those

used in the restriction schema of Complex Functions, are nested graphs;

structural identical to the ones used in examples in paragraph 7.2. Therefore,

it is possible to treat the restriction container of a Complex Function as the IF

part of a rule which quires for descriptions of states for which the Complex

Function applies. Consequently, the first part of the evaluation formula is a

rule triggered by a org:ComplexFunction in connection with its schema and

using this schema then as part of its own antecedent.

However, as outlined above, the traditional satisfy relation between a set of

statements and an antecedent of a rule is no longer sufficient, but only a

necessary condition, additional information for the calculation of the valuation

of a graph has to be taken into account. Thus, in the next step the variables in

the container hosting the functions, of a Complex Function, are connected to

the variables in its schema part, by string matching of its names. This allows

to derive for each variable (attribute), its associated weight and valuation

function. The body of the evaluation rule triggers then the evaluation of all

37

attributes according to the appropriate function, of the type org:Function as

discussed in section 8. The value calculated by the function, multiplied with

the weight of the attribute, can be interpreted as the valuation that a single

attribute contributes to the overall valuation of a Complex Function. In the last

step of the sum of weighted individual valuations, of attributes, is calculated.

The independent valuation of each attribute is in line with the additive utility

model discussed in paragraph 4.2. The formula below shows the central

aspects, as discussed; for the complete formula used in the prototype see

appendix A.4.

{{ sapl:I :calculate {?state ?complexFunction *}.

 ?complexFunction rdfs:subClassOf org:ComplexFunction;

 sapls:restriction ?schema;

 org:hasAssociatedFunctions ?functionContainer.

 ?state ?perdic {?schema sapl:is sapl:true }.

 ?functionContainer sapl:hasMember {

 ?attribute org:hasFunction ?atribut_function;

 org:hasWhight ?atribut_weight }.

 {?schema sapl:hasMember {?match * *}. ?attribute = ?match}

sapl:or

 {?schema sapl:hasMember {* * ?match}. ?attribute = ?match}.

 ?NumberOfAttributes_1 sapl:count ?attribute.

 } sapl:All ?attribute.

} => {

 sapl:I :calculate {?attribute ?atribut_function *}.

 { sapl:I :calculate {?attribute ?atribut_function ?valuation}.

 ?weightValuation sapl:expression "?atribut_weight*?valuation".

 }=>{ ?attribute :hasValue ?weightValuation

 }.

 { * :hasValue ?weightValuation.

 ?NumberOfAttributes_2 sapl:count ?weightValuation.

 ?NumberOfAttributes_2 = ?NumberOfAttributes_1.

 ?result sapl:sum ?weightValuation.

38

 }=>{

 sapl:I :calculate {?state ?complexFunction ?result}.

 ?state org:hasValuation ?result. }}.

The aggregation of the values for each attribute to the overall result and the

adding of the result are done in the THEN-part. Analogue to the previous

section modelling Complex Functions is a relation between a concrete

description of a org:Thing, a org:ComplexFunction and a real-valued scalar, to

which the later maps the former. In addition to the adding of the result into the

container sapl:I :calculate, the thing evaluated upon a Complex Function gets

connected to the result of the evaluation by the predicate org:hasValuation.

The benefit of such a straight connection becomes visible in the next section.

9.4 Refining Complex Functions
Once a Complex Function is defined it is often needed to further specify either

the thing’s to which it can by applied to or to select additional attributes. Such

a specification of types is done in ontologies via the concept of inheritance

(Bechhofer, 2004). The first step is the creation of a subclass of the Complex

Function that should be specified. In the next step a container connected to

the newly created subclass by the predicate sapls:Restriction, allows to add

additional statements to the schema part, that has to be satisfied by instances

of org:Thing; thus, to further restrict the scope of the Complex Function.

Further attributes can be identified by connecting a container by the predicate

org:hasAssociatedFunctions to the new created subclass. Consider the

following example S-APL code that continues the example given in figure 10.

:colorRequirement rdfs:subClassOf :printReqirement;

 sapls:Restriction {* :hasColorMode ?c};

 org:hasAssociatedFunctions {?c org:hasFunction :f3;

 org:hasWhight “2”}.

To ensure that the class :colorRequirement has all the restrictions and

functions its super classes have, two rules are needed to infer the class

hierarchy. The rule that is necessary to infer the restriction hierarchy can be

reused from the Semantics-Based Access Control Reasoner (Terziyan, 2008);

the one that is needed to grant that Complex Functions inherit the associated

39

Functions and weights of the attributes of their super classes is depicted in

the following formula; for the complete formula see appendix A.5.

{{ ?X org:hasAssociatedFunctions ?own.

 ?X rdfs:subClassOf ?C.

 ?C org:hasAssociatedFunctions ?super.

 ?super sapl:hasMember ?id.

} => { ?own sapl:hasMember ?super}.

10 Contracts
After the introduction of how states of the KB, made up as org:Thing’s, can be

evaluated by org:ComplexFunction’s to allow the mapping of a state of the

world to a real-valued scalar; it is shown in this section how this real-valued

scalar, interpreted as a utility valuation, can be used determine the value of

actions; and to decide which actions should be made and which not. Since the

context of this work is an economic one the actions that will be considered are

selling and buying. To establish a mutual beneficial agreement, in a potential

cooperative situation between a seller and a buyer, a contract is needed to

mark the terms to which both agree. Auctions are such a coordination

mechanism to establish mutual beneficial agreements. A statement that

indicates that an agent provides something is called offer; a statement

indicating the interests in an offer is called bid (McAfee, 1987).

10.1 Auctions
As discussed in paragraph 4.4 auctioning is a mechanism to determine a

contract between market principals (agents). In this paragraph the

mechanism of the Vickery auction will be deployed to establish a mutual

beneficial contract between two agents.

In the first step it has to be determined how to offer something; thus, how

to set up an auction. Since agents have to have the ability to determine the

value of what the auction is about, the class org:Auction is modeled as a

subclass of the class org:Thing. This has the advantage that the object of

the auction, the description what the auction is about, can be valuated

upon a Complex Function that acts as Utility Function. A Vickery auction,

40

as a special kind of auction, is modeled as a subclass of the class auction

as formalized in axiom A.8. and A.9. The additional intermediate class

auction brings the advantage that additional types of auctions, not

considered in this thesis, can be added without changing the ontology.

!

org : Auction " org :Thing#=1 org : hasAuctioneer.sapl : Agent (A.8)

!

org :Vicker yAuction " org : Auction#<2 org : hasDurnation.xsd : int

#org : hasMinPr ice.xsd : double#org : hasBid.org :Bid

#<2org : hasWinner.sapl : Agent#<2 org : hasMarketPr ice.xsd : double

 (A.9)

!

org :Bid "=1 org : hasAgent.sapl : Agent#=1 org : hasValuation.xsd : double (A.10)

!

org : hasMinPr ice " org : hasValuation.xsd : double (A.11)

The predicate org:hasAuctioneer connects an auction with the name of the

agent making the offer. The parameter org:hasDuration acknowledges the

pragmatic assumption of not having a point market, but giving the agents time

to response. The parameter org:hasMinPrice aids as a mean to ensure that

an offering agent does not have to give away something below the valuation

upon its utility for it; but bids below the minimal price will not further be

considered. In other words, the parameter org:hasMinPrice is the restriction

that the Utility Function policy, of the auctioneer, puts on the potential action

of selling something. Thus, the datatype property org:hasMinPrice is a sub

predicate of org:hasValuation as discussed in the previous section, see Axiom

A.11.

10.2 Bidding
After an agent has created an instance of the class org:VickreyAuction and

connected it with its name, by the predicate org:hasAuctioneer, as well as

determined the minimal price he is going to accept, in the datatype property

org:hasMinPrice, the instance and its connected objects are published to

other agents. Since the deployed communication mechanism is not central, it

will not further be discussed. However, a schematic illustration is given with

figure 11.

41

An agent can determine if it has received an offer by searching for instances

of the Vickrey auctions whose property org:hasAuctioneer is different from its

own name. If an agent finds such an offer a second evaluation of the auction

starts. However this time, not by the Utility Function of the seller, but upon its

own Utility Function a valuation is calculated. Thus, in this stage an agent is in

the position to compare its own utility valuation, for the thing the auction is

about, with the minimal price set by the seller. Likewise to the seller’s side the

Utility Function policy determines now in which potential trades (actions) the

agent is interested in, as well as its maximal willingness to pay.

As in the previous paragraph pointed out (axiom A.9) instances of the class

Vickery auction can have an arbitrary number of bids connected by the

predicate org:hasBid. Whereby each single instance of the class org:Bid

connects the name of the bidder with a valuation, in the height it likes to bid,

as formalized by axiom A.10. Therefore, an agent makes a bid by creating an

instance of the class org:Bid and connecting it together with its name and its

utility valuation to the auction. The next formula formulizes this by adding a

bid to instances of a Vickery auction in the height of the utility valuation, if one

exists. Since the Vickrey auctions have the property of self-revelation,

creating a bid for each auction in the height of the evaluated utility valuation is

a dominant strategy (see paragraph 4.4). Sending the information back to the

auctioneer is again omitted.

{ ?auction rdf:type org:VickreyAuction;

 org:hasMinPrice ?minPrice.

 ?auction org:hasValuation ?util.

 ?util > ?minPrice.

}=>{

 ?auction org:hasBid [org:hasAgent sapl:I; org:hasValuation ?util]

}.

Please note that the square brackets, in the object path of the consequence of

the rule, are the blank node syntax of N3 to express that there exists

something (a bid) that is connected to the statements within the bracket

(Berners-Lee, 2006).

42

10.3 Reasoning inside a Container
One essential aspect has not been considered so far: RDFS and OWL

inference. While the basic rules of entailment are available in the root

container (Katasonov, 2008) no approach to the inference with these rules

inside containers has been put forward so far (as far as the author is aware).

However, such an inference is necessary to allow that a vocabulary, an agent

has, can be applied to the description of a bid. Since a detailed theoretical

discussion would exceed the limitations of this thesis, only a very practical

attempt will be made. The basic idea is that the vocabulary and the

statements, to which the vocabulary should be applied to, are located in

distinct containers (ontological spaces). Consequently, the RDFS and OWL

rules of entailment have to be inferred for the vocabulary container in the first

place. Moreover, the deductive cloud, generated upon the OWL and RDFS

rules, of the vocabulary in conjunction with the statements in the description

container, is added only to the other container and not to the one hosting the

vocabulary. This enables the agents to apply a vocabulary to an offer in such

a way that the new facts created upon the offer together with the vocabulary

are only inside the description container of the offer. The following formula

depicts as an example the RDFS rule of entailment rule9 (Hayes, 2004); for

Figure 11

43

the formulas necessary to infer other rules of entailment have a look in

appendix A.7.

{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?A rdfs:subClassOf ?B}.

 ?c2 sapl:hasMember {?S rdf:type ?A}.

} => { ?c2 sapl:hasMember {?S rdf:type ?B}}

10.4 The Evaluation
In the last step of an auctioning process the winner and the price to be paid

have to be determined. As outlined in paragraph 4.4 the highest bidder wins a

Vickery auction; however, only the costs that are put on the other participants

are charged. The parameter org:hasDuration determines when the auction will

be closed and the evaluation can begin after this point in time has passed. If

bids are made the formula determines in the first step which is the top bid; in

the second step which is the second highest bid; and in the last step who has

made the top bid. In the consequent graph the property org:hasWinner and

the datatype property org:hasMarketPrice are added to the auction; the first

connecting the name in the top bid, the second connecting the valuation in the

second highest bid. The cases of only one bidder or only one bidder bids

above the minimal required bidding price are omitted in the following formula;

however, made accessible to the interested reader in appendix A.6.

 {{ ?auct rdf:type org:VickreyAuction;

 org:hasMinPrice ?minprice;

 org:hasBid [org:hasAgent ?agent;

 org:hasValuation ?bidPrice, ?SecBidPrice].

 ?SecBidPrice < ?bidPrice.

 ?SecMaxBidPrice sapl:max ?SecBidPrice.

 ?auct org:hasBid [org:hasAgent ?winner;

 org:hasUtility ?SecMaxBidPrice].

}=>{

 ?auct org:hasWinner [org:hasAgent ?winner;

 org:hasValuation ?SecMaxBidPrice]}.

44

Figure 12 shows an exemplary situation, utilizing the concepts introduced so

far. Agent Mary launches the auction :printOffer with the minimal pricing of 5

Utils. Agent John receives the offer, evaluates it, with its Utility Function upon

the value of 10 Utils, and places his bid accordingly. The same applies to

agent Bob; however, his Utility Function results only with a valuation in the

height of 6 Utils. After both agents have made their bids, the auctioneer Mary

determines the winner John and the price to be paid in the amount of 6 Utils,

leading to an overall increase in the utility for the agents in the amount of

1+4=5 Utils.

11 Dynamic Allocation
The approach discussed so far enables agents to express a utility for goods

and to acquire them. However, the approach runs into a problem if not only

one item can be acquired, but multiple ones. In other words, it is possible to

express the utility an agent gets from the ownership of a print service, but it

remains open how to model that an agent might have a lower benefit from

acquiring an additional print opportunity than in the first place. First attempts

to deal with a decreasing utility of an additional unit of a good are made by

Cramer (1728) and Daniel Bernoulli (1738), as an attempt to solve the St.

Petersburg, building the fundament of what is later known as Marginal

Revolution.

Figure 12

45

While in the previous section the central concern was to whom a single good

should be allocated, to reach a global optimum, the question to answer in this

section is: How to distribute the proportions of a dividable good in such a way

that a global optimum is reached? To achieve this the already introduced

concept of auctions will be changed in two ways: First, the minimal bidding

price and the bidding price itself will not longer be derived upon the valuation

by the Utility Function, but by the difference a loss or gain (i.e. Border-use), of

the org:Thing the auction is about, would bring. Second, not only one auction

will be considered, but also a series of auctions will be used to achieve an

optimal allocation. In the first paragraph of this section the makeup of the

current KB, for the change an auction would bring to it and for the resulting

hypothetical state of the KB, is in the focus. In the next paragraph the

calculation of the value of the change from the current to the hypothetical KB

is in the centre. In the last paragraph a small simulation, as proof of concept,

is conducted.

11.1 Locking into the Future
In a first step the class org:Thing has to be examined. Up to yet, the class is

only used to describe the configuration of one single and static item. However,

no theoretical constraints enforce this. Moreover, the class is defined only as

a subclass of owl:Thing that has to have a container in the subject part

connected to it (axiom A.6). In other words, the class org:Thing is the parent

class of all instances that have a container in their subject-path. Thus,

org:Thing can be used to host the agents representation of the state of the

world in a very general way. Since this thesis has an economic context, the

state of the world is determined for an agent by its ownership and the class

org:Thing is used to represent this ownership. Consider the next statement as

a minimal example of such an economic KB.

:myKb org:hasDescription {sapl:I ex:haveEnergy “4.8”^^xsd:double}.

In the next step three types of such an economic Knowledge Base have to be

distinguished: current KB, hypothetical KB, and a KB representing the

difference between the former and the later.

46

The representation of the amount of things currently controlled by the agent is

modelled by the class org:CurrentKb, subclass of org:Thing; whereby each

agent, participating in the dynamic allocation process described here, has to

have exactly one instance of org:CurrentKb.

!

org :CurrentKb" org :Thing (A.12)

!

org :HypotheticalKb" org :Thing (A.13)

Neglecting eventual productive capabilities of agents the change to an

instance of the class org:CurrentKb is reduced to exchange with other agents;

thus, to auctioning as it is discussed in the previous section. Likewise, the

change to the current KB will be represented by instances of the class

org:Auction.

However, to prohibit that an agent gives something away below its own

valuation for it, the preference for the thing an auction is about has to be

calculated. In other words, the difference a change in the current KB would

cause to the utility level of an agent is needed. To accomplish this a

hypothetical KB has to be constructed. To identify the hypothetical KB as such

the class org:HypotheticalKb is introduced (axiom A.13), analogously to the

class org:CurrentKb.

11.2 Determining the Value Of Change
The calculation of the value of a possible action (e.g. org:VickreyAuction),

leading to a change in the KB, can be reduced to the calculation of the

difference between the current and the hypothetical KB, as well as the

construction of the hypothetical KB.

The construction of a hypothetical KB, for a given current KB and a given

change to it, depends on the schema of the KB (i.e. the application ontology).

Thus, no general formula can be given, but a continuation of the example KB

given in the previous paragraph illustrating the very steps of the construction

of a hypothetical KB. In the head of the formula the current KB as well as the

change, which will potentially be applied to it, are bound to variables. In the

next step the difference is calculated. In the body of the formula the

47

hypothetical KB is constructed and evaluated along with the current KB by the

Utility Function of the agent.

{ ?currentKb org:Description {* ex:haveEnergy ?eCur};

 rdf:type org:CurrentKb.

 ?change org:hasDescription {* ex:haveEnergy ?eChange};

 rdf:type org:Auction

 ?eHyp sapl:expression "?eCur-eChange".

}=>{

 _:hypKB org:hasDescription

 {sapl:I ex:haveEnergy ?eHyp}.

 sapl:I org:calculate {?currentKb ex:UtilityFunction *}.

 sapl:I org:calculate {_:hypKB ex:UtilityFunction *}.

}.

Figure 13

48

Likewise, this formula has to be implemented also for the agent on the buyer’s

side. However, constructing the hypothetical KB on the sum of the change, a

won auction would bring, to the current KB.

The calculation of the value of the change to the agent is the calculation of the

difference in valuation between the current KB and the hypothetical, as

depicted in formula below.

{ sapl:I org:calculate {?currentKb ex:UtilityFunction ?currentUtility}.

 sapl:I org:calculate

 {_:hypKB ex:UtilityFunction ?hypotheticalUtility}.

 ?currentKb rdf:type org:CurrentKb.

 ?hypotheticalValuation sapl:expression

 "?hypotheticalUtility-?currentUtility".

 ?change rdf:type org:Auction.

}=>{

 ?change org:hasValuation ?hypotheticalValuation.

}.

In contrast to the construction of the hypothetical KB, the calculation of the

value of the change requires no differentiation between the buyers and sellers

side and is domain independent; for the complete version used in the

prototype, see appendix A.8.

11.3 An Application Example
Up to yet, all basic components of a market in a Multi-Agent system have

been introduced. However, an application example, close to the demands of

real-world situations, remains to be given. In this paragraph it is presented

how the approach can be used to handle the application of power load

management. The reader is asked to keep in mind that this is only a proof of

the method presented in this thesis. Consequently, only mathematical

formulas are given that are relevant for the properties of the application, but

no formulas are given for a specific domain.

49

Any device that consumes electric energy, such as electric heating systems or

streetlights, is considered as a load. Load management refers to the concept

of controlling the amount of load a device receives, to achieve an efficient use

of energy. For an in depth review of the concept of load management, and a

differentiation between direct an indirect load management, see (Ygge, 1996).

There are a number of reasons why the approach put forward in this thesis is

interesting in the area of load management. On the one hand side, since the

information is distributed through the system, and not transmitted to a central

point, there is a potential gain in reduced communication as well as in

stability. On the other hand side, the task of load management is

computational complex and a decentralized approach can utilize the inherent

computational power of each node in the network. Furthermore, from an

engineering point of view a system of distributed agents, instead of a

centralized one, enables to add, delete and modify loads without changing the

entire system. Last but not least, due to the W3C standards, followed in this

thesis, the approach can easily be integrated into an existing infrastructure.

The market is designed in such a way that one agent

represents one controllable load. The need of a load

for a share of the globally constraint resource

(energy), is expressed by the Utility Functions of the

agent. Conforming to standard utility theory the Utility

Functions are concave so that the first derivative (i.e.

the bidding price) decreases with increased share of

the resource (Oberender, 2004 p.169). Thus, the

second derivative of the Utility functions is negative.

Beginning from the Utility Functions and the initial

distribution of the resource the market mechanism

settles the distribution of the energy.

Besides the agents representing loads, a Controller agent is used to provide a

way to manipulate the loads in order to make the loads to behave in a certain

way, as suggested by Ygge (1996). Thus, the Controller agent can be thought

Figure 14

50

of as an instance to manage the whole system. Figure 14 depicts the used

topology.

In an auction, all agents receive an offer from the auctioning agent and send a

bid back to the designated auctioneer. In the next step a reallocation is

computed as discussed in section 10. The roles auctioneer and bidder are not

static, but an agent enacting the auctioneer role schedules auctions as long

as in the last auction at least one bidder submitted a bid above the minimal

bidding price; has no agent submitted such a bid, another agent gets

assigned with the role the auctioneer.

The goal is to maximize the global utility

!

Uglob of all agents that they have from

the resource energy e. Whereby the global utility is the sum of the utilities the

agents have

!

uglob (e1,...,en) = u
1
(e
1
) + ...+ un (en), and the sum of energy is the

globally constraint by

!

E = e
1

+ ...+ e
n
. The global utility maximum is reached if

the so-called Kuhn-Tucker conditions are fulfilled; thus, if all first derivatives of

the agents Utility Functions are equal to a shared value (Oberender, 2004 pp.

230). In other words, an optimal distribution of energy is reached if all agents

express the same need (bidding price) for an additional unit of the resource.

In figure 15, the performance of

a simulation is shown. Each

load agent is assigned with

initial share of the available

energy of 1.5 KW. The

Controller agent (depicted in

the figure by the graph with

circles) is assigned with 3.5 KW. From such an initial, suboptimal, distribution

equilibrium is reached after one round. A round is finished after each agent

has enacted the auctioneer role. In the second round a load agent tries to

reduce its load by changing its Utility Function and consequently having a

lower valuation for a share of the resource. Again, the system settles in the

next round.

Figure 15

51

If the price of the energy, expressed by the agents, directly corresponds to the

real price of resource it can immediately be controlled how much a change in

the demand of an agent or supply costs. This is in particular useful for the

management of such a system (Ygge, 1996).

12 Conclusion
In this last section the achievements and shortcomings of the presented

approach are reviewed and possible solutions are shortly examined.

12.1 Achievements, Limitations and further Research
In this thesis the author gave a structured overview on policies as well as

mathematical models for their application. Furthermore, a novel approach for

their application on the selection of the actions (i.e. trades) those are not only

good enough, but are also the best action for a given choice set (i.e. bids).

The author claims that the approach put forward has several advantages

compared to current methods (as cited in paragraph 2.2): First, it is not bound

to any specific domain. Second, the selection of attributes, relevant to the

agent, is done by the agent and not determined a priori by a second party.

Third, the agents are not confronted with static prices, but with prices

emerging as a result of supply and demand, allowing to identify potential

bottlenecks and to monitor the overall performance of the system. This is in

particular useful since ultimately all activities are bound to economic

exchanges (Adelsberger, 2000), and the problem of relating cause and effect

is easier if the interdependence of supply and demand is made explicit.

However, the applicability of the approach is also restricted. First, in the

immediate scope of the thesis are only rational (i.e. for both parties beneficial)

trades. Second, the approach has just been applied to situations with only two

commodities, (i.e. a good and money in terms of Utils). Third, the allocation

has been carried out by sequential auctions. Thus, only one item is auctioned

at a time. The author considers however, that preferences of an agent

towards bundles (i.e. combinations of items) have not been covered as the

biggest limitation. A typical example, for bundles, is a computer and a monitor;

whereby the valuation for each item is lower then for both together. However,

several authors have addressed the problem of bundles.

52

The central difficulty is that to determine the valuation for an individual item;

the bidder needs to know what parts of the bundle it will receive in later

auctions. This requires speculations about bids of other agents, because they

affect what the agent is going to receive. Moreover, what other agents bid

depends again on what they believe about their competitors. This counter

speculations lead to NP-hard problems in terms of computational costs

(Fujishima, 1999). While the computational overhead, in sequential auctions,

cannot be resolved various approaches have been put forward in order to fix

the inefficient allocations that emerge from the uncertainties. One approach is

to install an after market for enabling the bidders to exchange things after the

main auction has been closed. Such an approach can correct some

inefficiency. However, it is not guaranteed that a Pareto efficient allocation is

reached and it involves a large number of exchanges (Rothkopf, 1998).

Another approach, discussed by Sandholm and Lesser (1995; 1996), is to

allow agents to retract their bids if they do not get the desired combinations. In

the case of a retraction, the item gets auctioned again. However, the

possibility of retraction can lead to gaming, in particular if a bidder believes

that it can get the item for a lower price. A third approach is to allow bidders to

place bids on combinations of items as discussed by Vries (2003). While

combinatorial auctions free the agents from the look-ahead, they require a

central auctioneer to determine an optimal allocation. Typically this is a non-

trivial NP-hard task. Sandholm (2001) put forward promising work to tackle

the computational complexity.

12.2 Acknowledgements
I want to thank my friends and colleagues at the Industrial Ontologies Group

as well as the University of Jyväskylä. Without their support, this work would

not have been possible.

53

Appendix

Appendix A.1

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix org: <http://www.example.com/org#>.

{{ sapl:I sapl:want {sapl:I :calculate {?a ?f *}}.

 ?f rdf:type org:DiscreteFunction;

 org:hasPoint ?p.

 ?p org:hasAttribute ?ar;

 org:hasUtility ?u.

 ?ar = ?a.

} >> {

 sapl:I :calculate {?a ?f ?u}.

}} sapl:is sapl:Rule.

54

Appendix A.2

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix org: <http://www.example.com/org#>.

{{

 sapl:I sapl:want {sapl:I :calculate {?a ?f *}}.

 ?f rdf:type org:LinearFunction.

} >> {{

 ?f org:hasPoint ?1p;

 org:hasPoint ?2p.

 ?1p org:hasAttribute ?1v.

 ?2p org:hasAttribute ?2v.

 ?n sapl:expression "?a-?1v".

 ?n >= 0.

 ?t sapl:min ?n.

 ?n = ?t.

 ?b sapl:expression "?2v-?a".

 ?b > 0.

 ?r sapl:min ?b.

 ?b = ?r.

 } => {{

 ?helper1 org:hasAttribute ?1v;

 org:hasUtility ?1u.

 ?helper2 org:hasAttribute ?2v;

 org:hasUtility ?2u.

 ?u sapl:expression "?1u+(?a-?1v)*((?2u-?1u)/(?2v-

?1v))".

 } =>{

 sapl:I :calculate {?a ?f ?u}

}}}} sapl:is sapl:Rule.

55

Appendix A.3

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix org: <http://www.example.com/org#>.

{{{ sapl:I sapl:want {sapl:I :calculate {?a ?f *}}.

 ?f rdf:type org:PolynomialFunction;

 org:hasTerm ?p.

 ?p org:hasWeight ?w;

 org:hasExponent ?e.

 ?x sapl:count ?p.

 } sapl:All ?p.

} >> {

 {

 ?u sapl:expression "?w*pow(?a,?e)"

 }=>{

 org:PolynomialFunction :archive { ?a ?f {?p :hasResult ?u}}.

 }.

 {

 org:PolynomialFunction :archive { ?a ?f {* :hasResult ?zu}}.

 ?y sapl:count ?zu.

 ?y = ?x.

 ?h sapl:sum ?zu.

 }=>{

 sapl:I :calculate {?a ?f ?h}.

} } } sapl:is sapl:Rule.

56

Appendix A.4

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix sapls: <http://www.ubiware.jyu.fi/sapl_schema#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix org: <http://www.example.com/org#>.

{ {sapl:I sapl:want {sapl:I :calculate {?state ?complexFunction *}}.

 } => {{{

 ?complexFunction rdfs:subClassOf org:ComplexFunction;

 sapls:restriction ?schema;

 org:hasAssociatedFunctions ?functionContainer.

 ?state ?perdic {?schema sapl:is sapl:true }.

 ?state != ?complexFunction.

 sapl:I sapl:doNotBelieve {?complexFunction rdfs:subClassOf

?state}.

 sapl:I sapl:doNotBelieve {?state org:hasUtility {* org:upon ?P}}.

 ?functionContainer sapl:hasMember {

 ?attribute org:hasFunction ?atribut_function.

 ?atributeHelp org:hasWhight ?atribut_whight.

 }.

 ?atributeHelp = ?atribute.

 {?schema sapl:hasMember {?match * *}. ?attribute = ?match}

sapl:or

 {?schema sapl:hasMember {* * ?match}. ?attribute = ?match}.

 ?NumberOfAttributes_1 sapl:count ?attribute.

 } sapl:All ?attribute.

} => {sapl:I sapl:want {sapl:I :calculate {?attribute ?atribut_function *}}.

 { sapl:I :calculate {?attribute ?atribut_function ?valuation}.

 ?weightValuation sapl:expression "?atribut_whight*?valuation".

 }=>{ org:ComplexFunction :archive {?state ?complexFunction

{?attribute :hasValue ?weightValuation}}.

 }.

 { * :hasValue ?weightValuation.

57

 ?NumberOfAttributes_2 sapl:count ?weightValuation.

 ?NumberOfAttributes_2 = ?NumberOfAttributes_1.

 ?result sapl:sum ?weightValuation.

 }=>{

 sapl:I :calculate {?state ?complexFunction ?result}.

 ?state org:hasValuation ?result.

}}}} sapl:is sapl:Rule.

Appendix A.5

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix org: <http://www.example.com/org#>.

{{{ ?X org:hasAssociatedFunctions ?own.

 ?X rdfs:subClassOf ?C.

 ?C org:hasAssociatedFunctions ?super.

 ?super sapl:hasMember ?id.

 sapl:I sapl:doNotBelieve {?own sapl:hasMember ?super}.

} => {

 ?own sapl:hasMember ?super.

} sapl:is sapl:Rule }.

58

Appendix A.6

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix org: <http://www.example.com/org#>.

{{ ?auct rdf:type org:VickreyAuction;

 org:hasDuration ?duration;

 org:hasMinPrice ?minprice;

 org:hasStartTime ?starttime;

 org:hasBid [org:hasAgent ?winningAgent;

org:hasValuation ?bidPrice].

 {?auct org:hasDescription {?object sapl:is sapl:true}} sapl:or

{?auct org:hasDescription ?object}.

 sapl:Now sapl:is ?now.

 ?now > ?starttime+?duration+400.

 sapl:I sapl:doNotBelieve {?auct org:hasEndTime *}.

 ?bidPrice >= ?minprice.

 ?numberOfBids sapl:count ?winningAgent.

 ?numberOfBids < 2.

}=>{

 ?auct org:hasEndTime ?now.

 ?auct org:hasWinner ?winningAgent;

 org:hasMarketPrice ?minprice;

 org:numberOfBids ?numberOfBids.

}

{ ?auct rdf:type org:VickreyAuction;

 org:hasDuration ?duration;

 org:hasMinPrice ?minprice;

 org:hasStartTime ?starttime;

 org:hasBid ?1bNode, ?2bNode, ?3bNode.

 {?auct org:hasDescription {?object sapl:is sapl:true}} sapl:or

{?auct org:hasDescription ?object}.

 sapl:Now sapl:is ?now.

59

 ?now > ?starttime+?duration+400.

 sapl:I sapl:doNotBelieve {?auct org:hasEndTime *}.

 ?1bNode org:hasAgent ?winningAgent;

 org:hasValuation ?1MaxBidPrice.

 ?2bNode org:hasAgent ?2ag; org:hasValuation ?2MaxBidPrice.

 ?1MaxBidPrice > ?2MaxBidPrice.

 ?SecMaxBidPrice sapl:max ?2MaxBidPrice.

 ?numberOfBids sapl:count ?3bNode.

 ?numberOfBids > 1.

 ?1MaxBidPrice >= ?minprice.

}=>{

 ?auct org:hasWinner ?winningAgent;

 org:numberOfBids ?numberOfBids.

 ?auct org:hasEndTime ?now.

 {?SecMaxBidPrice > ?minprice} -> {

 ?auct org:hasMarketPrice ?SecMaxBidPrice.

 }; sapl:else {

 ?auct org:hasMarketPrice ?minprice.

}}} sapl:is sapl:Rule.

60

Appendix A.7

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

Entailment Rule: rdfs2

{{{{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdfs:domain ?C}.

 ?c2 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve {?c2 sapl:hasMember {?S rdf:type ?C}}.

 } sapl:All ?S } sapl:All ?C.

} => { ?c2 sapl:hasMember {?S rdf:type ?C}}} sapl:is sapl:Rule.

Entailment Rule: rdfs3

{{{{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdfs:range ?C}.

 ?c2 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve {?c2 sapl:hasMember {?O rdf:type ?C}}.

 } sapl:All ?O} sapl:All ?C.

} => { ?c2 sapl:hasMember {?O rdf:type ?C}}} sapl:is sapl:Rule.

Entailment Rule: rdfs5

{{{{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember

 {?Q rdfs:subPropertyOf ?R. ?P rdfs:subPropertyOf ?Q}.

 sapl:I sapl:doNotBelieve

 {?c1 sapl:hasMember {?P rdfs:subPropertyOf ?R}}.

61

 } sapl:All ?P} sapl:All ?R.

} => {?c1 sapl:hasMember {?P rdfs:subPropertyOf ?R}}

} sapl:is sapl:Rule.

Entailment Rule: rdfs7

{{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdfs:subPropertyOf ?R}.

 ?c2 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve {?c2 sapl:hasMember {?S ?R ?O}}.

 } sapl:All ?S} sapl:All ?R} sapl:All ?O.

} => { ?c2 sapl:hasMember {?S ?R ?O}}} sapl:is sapl:Rule.

Entailment Rule: rdfs9

{{{{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?A rdfs:subClassOf ?B}.

 ?c2 sapl:hasMember {?S rdf:type ?A}.

 sapl:I sapl:doNotBelieve {?c2 sapl:hasMember {?S rdf:type ?B}}.

 } sapl:All ?S} sapl:All ?B.

} => { ?c2 sapl:hasMember {?S rdf:type ?B}}} sapl:is sapl:Rule.

Entailment Rule: rdfs11

{{{{ ?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember

 { ?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B} .

 sapl:I sapl:doNotBelieve

 {?c1 sapl:hasMember {?A rdfs:subClassOf ?C}}.

 } sapl:All ?A} sapl:All ?C.

} => { ?c1 sapl:hasMember {?A rdfs:subClassOf ?C}}} sapl:is sapl:Rule.

62

OWL Entailment Rule: Symmetric property

{{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdf:type owl:SymmetricProperty}.

 ?c2 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve { ?c2 sapl:hasMember {?O ?P ?S}}.

 } sapl:All ?P} sapl:All ?S } sapl:All ?O.

} => {?c2 sapl:hasMember {?O ?P ?S}}.

{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdf:type owl:SymmetricProperty}.

 ?c1 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve { ?c1 sapl:hasMember {?O ?P ?S}}.

 } sapl:All ?P} sapl:All ?S } sapl:All ?O.

} => {?c1 sapl:hasMember {?O ?P ?S}}} sapl:is sapl:Rule.

OWL Entailment Rule: Inverse property

{{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P owl:inverseOf ?Q}.

 ?c2 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve { ?c2 sapl:hasMember {?O ?Q ?S}}.

 } sapl:All ?O} sapl:All ?Q} sapl:All ?S.

} => {?c2 sapl:hasMember {?O ?Q ?S}}.

{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P owl:inverseOf ?Q}.

 ?c1 sapl:hasMember {?S ?P ?O}.

 sapl:I sapl:doNotBelieve { ?c1 sapl:hasMember {?O ?Q ?S}}.

 } sapl:All ?O} sapl:All ?Q} sapl:All ?S.

} => {?c1 sapl:hasMember {?O ?Q ?S}}} sapl:is sapl:Rule.

63

OWL Entailment Rule: Transitive property

{{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdf:type owl:TransitiveProperty}.

 ?c2 sapl:hasMember {?S ?P ?X. ?X ?P ?O}.

 sapl:I sapl:doNotBelieve {?c2 sapl:hasMember {?S ?P ?O}}.

 } sapl:All ?S} sapl:All ?P} sapl:All ?O.

} => {?c2 sapl:hasMember {?S ?P ?O}}.

{{{{?c1 :appliesTo ?c2.

 ?c1 sapl:hasMember {?P rdf:type owl:TransitiveProperty}.

 ?c1 sapl:hasMember {?S ?P ?X. ?X ?P ?O}.

 sapl:I sapl:doNotBelieve {?c1 sapl:hasMember {?S ?P ?O}}.

 } sapl:All ?S} sapl:All ?P} sapl:All ?O.

} => {?c1 sapl:hasMember {?S ?P ?O}}.

} sapl:is sapl:Rule.

64

Appendix A.8

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix org: <http://www.example.com/org#>.

{{ sapl:I org:calculate {?currentKb ?utilityFunction ?currentUtility}.

 sapl:I org:calculate

 {?hypotheticalKb ?utilityFunction ?hypotheticalUtility}.

 ?currentKb rdf:type org:CurrentKb.

 ?hypotheticalKb rdf:type org:HypotheticalKb.

 ?utilityFunction rdfs:subClassOf org:ComplexFunction.

 ?hypotheticalValuation sapl:expression

 "?hypotheticalUtility-?currentUtility".

 ?change rdf:type org:Auction.

 sapl:I sapl:doNotBelieve

 {?change org:hasValuation ?hypotheticalValuation}.

}=>{

 ?change org:hasValuation ?hypotheticalValuation.

}} sapl:is sapl:Rule.

65

Bibliography
Adelsberger, H.H. (2000). "Economic Coordination Mechanisms for Holonic Multi‐Agent
Systems," in 11th International Workshop on Database and Expert Systems
Applications; p. 236.

Agarwala, Sudhir; Lamparter, Steffen; Studera, Rudi (2008). “Making Web services tradable
A policy‐based approach for specifying preferences on Web service properties” in Web
Semantics: Science, Services and Agents on the World Wide Web.

Badr, N.; Taleb‐Bendiab, A.; Reilly, D. (2004) “Policy‐Based Autonomic Control Service” in
Proceedings Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks.

Bai, Q.; Zhang, M. (2006).“Coordinating Agent Interactions Under Open Environments” in
Advances in Applied Artificial Intelligence; Idea Group.

Bearden, Mark; Garg, Sachin; Lee, Woei‐jyh (2001). “Integrating goal specification in policy‐
based management” in 2nd International Workshop on Policies for Distributed Systems
and Networks; p. 29–31.

Bechhofer, Sean; Harmelen, Frank van; Hendler, Jim; Horrocks, Ian; McGuinness, Deborah,
L.; Patel‐Schneider, Peter, F.; Stein, Lynn, Andrea (2004). “OWL Web Ontology Language:
Reference” W3C Recommendation; http://www.w3.org/TR/owl‐ref/.

Bellifemine, Fabio; Poggi, Agostino; Rimassa, Giovanni (2001). “Developing Multi‐agent
Systems with JADE” in Intelligent Agents VII Agent Theories Architectures and
Languages; p. 42–47; Berlin, Heidelberg: Springer.

Berners‐Lee, Tim (1998). “Semantic Web Road map” in W3C DesignIssues;
http://www.w3.org/DesignIssues/Semantic.html.

Berners‐Lee, Tim (1999). Weaving the Web; San Francisco: Harper.

Berners‐Lee, Tim; Hendler, James; Lassila, Ora (2001). "The Semantic Web" in Scientific
American; Vol. 284; p. 28‐37.

Berners‐Lee, Tim (2006). “Notation 3: An readable language for data on the Web” in W3C
DesignIssues; http://www.w3.org/DesignIssues/Notation3.html.

Berners‐Lee, Tim, Connolly, D., Kagal, L., Hendler, J., Schraf, Y. (2008). “N3Logic: A Logical
Framework for the World Wide Web.” in Journal of Theory and Practice of Logic
Programming (TPLP), Special Issue on Logic Programming and the Web.

Bernoulli, Daniel (1738). “Specimen theoriae novae de mensura sortis” in Commentarii
Academiae Scientiarum Imperialis Petropolitanae Vol.5; reprinted in translation as
“Exposition of a new theory on the measurement of risk” in Econometrica; Vol.22; p.23–
36.

Boella, G; van der Torre, L. (2004). “An Agent Oriented Ontology of Social Reality” in
Proceedings of Formal Ontologies in Information Systems conference (FOIS’04); p. 199–
209.

Biron, Paul; Permanente, Kaiser; Malhotra, Ashok (2004). “XML Schema Part 2: Datatypes
Second Edition” W3C Recommendation; http://www.w3.org/TR/xmlschema‐2/.

66

Bray, Tim; Paoli, Jean; Sperberg‐McQueen, C. M; Maler, Eve; Yergeau, François (2006).
“Extensible Markup Language (XML)” W3C Recommendation;
http://www.w3.org/TR/REC‐xml/.

Brickley, Dan; Guha R.V. (2004). “RDF Vocabulary Description Language 1.0: RDF Schema”;
W3C Recommendation. http://www.w3.org/TR/rdf‐schema/.

Brussel, H.; Wyns, J.; Valckenaers, P.; Bongaerts, L.; Peeters. P. (1998). “Reference
architecture for holonic manufacturing systems” in Computers in Industry; Vol. 37; p.
255–274.

Chandra, A.; Gong, W.; Shenoy, P; (2003). “Dynamic Resource Allocation for Shared Data
Centres Using Online Measurements” in Joint International Conference on Measurement
and Modelling.

Charlton, P.; Cattoni, R.; Potrich, A.; Mamdani, E. (2000). “Evaluating the FIPA Standards
and Its Role in Achieving Cooperation in Multi‐Agent Systems” in Proceedings of the
33rd Hawaii International Conference on System Sciences; Vol. 8.

Chevaleyre, Y.; Endriss, U.; Estivie, S.; Maudet. N. (2004). “Multiagent resource allocation
with k‐additive utility functions” in Proceedings of DIMACS‐LAMSADE Workshop on
Computer Science and Decision Theory.

Clarke, E. H. (1971). “Multipart pricing of public goods.” in Public Choice; Vol. 11; p. 17–33.

Cramer, Gabriel (1728). "Exposition of a New Theory on the Measurement of Risk," in a
Letter from Cramer to Nicholas Bernoulli; translated into English by Louise Sommer;
Econometrica Vol. 22; p. 23–36.

Das, R.; Kephart, J.O. (2007). “Achieving self‐management via utility functions.” In IEEE
Internet Computing; Vol. 11‐1; p. 40–48.

Dias, M. B.; Stentz, A. (2000). “A free market architecture for distributed control of a
multirobot system.” in 6th International Conference on Intelligent Autonomous Systems
p. 115–122.

Ding, Li; Zhou , Lina; Finin , Tim; Joshi, Anupam (2005). “How the Semantic Web is Being
Used: An Analysis of FOAF Documents” in Proceedings of the 38th Hawaii International
Conference on System Sciences.

Dixit, Avinash; Skeath, Susan (1999). Games of Strategy. New York: Norton.

Dulay, N.; Lupu, E.; Sloman, M.; Damianou, N.(2001). “A policy deployment model for the
Ponder language” in Integrated Network Management Proceedings, IEEE/IFIP
International Symposium; p.529–543.

Dürst, Martin; Freytag, Asmus (2007). “Unicode in XML and other Markup Languages” W3C
Technical Report; http://www.w3.org/TR/unicode‐xml/.

Eiter, Thomas; Lukasiewicz, Thomas; Schindlauer, Roman; Tompits, Hans (2004). “Well‐
Founded Semantics for Description Logic Programs in the Semantic Web” in Lecture
Notes in Computer Science; Vol. 3323; p. 81–97; Berlin, Heidelberg: Springer.

Ermolayev, Vadim; Keberle, Natalya; Plaksin, Sergey; Kononenko, Oleksandr; Terziyan,
Vagan (2004). “Towards a Framework for Agent‐Enabled Semantic Web Service
Composition” in International Journal of Web Services Research; Vol. 3; p. 63–87.

67

Fallside, David C.; Walmsley, Priscilla (2004). “XML Schema Part 0: Primer Second Edition”
W3C Recommendation; http://www.w3.org/TR/xmlschema‐0/.

Faratin, P.; Sierra, C.; Jennings, N.R. (1998). “Negotiation Decision Functions for
Autonomous Agents” in Robotics and Autonomous Systems; Vol. 24, p. 159–182.

Fellbaum, Christiane (1998). WordNet An Electronic Lexical Database; MIT Press:
Cambridge.

Fujishima, Yuzo; Leyton‐Brown, Kevin; Shoham, Yoav (1999). “Taming the Computational
Complexity of Combinatorial Auctions: Optimal and Approximate Approaches” in
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence; p.
548–553.

Gaertner, Dorian; Clark, Keith; Sergot, Marek (2007) “Ballroom etiquette: A Case Study for
Norm‐Governed Multi‐Agent Systems” in Coordination, Organizations, Institutions, and
Norms in Agent Systems II; p. 212–226.

Gangemi, Aldo; Mika, Peter (2003). “Understanding the Semantic Web through Descriptions
and Situations” in On The Move to Meaningful Internet Systems; Berlin, Heidelberg:
Springer.

Gou, L.; Luh, P.; Kyoya Y. (1998). “Holonic manufacturing scheduling: architecture,
cooperation mechanism, and implementation.” in Computers in Industry; Vol. 37; p.
213–231.

Grosof, B.; Poon, T. (2003). “SweetDeal: Representing agent contracts with exceptions using
XML rules, ontologies, and process descriptions.” in Proceedings of the 12th World Wide
Web Conference; Budapest, Hungary.

Groves, T. (1973). “Incentives in teams.” in Econometrica; Vol. 41; p. 617–631.

Hardin, Garrett (1968). “The Tragedy of the Commons” in Science; Vol. 162; p. 1243 – 1248.

Hayes, Patrick (2004). “RDF Semantics” W3C Recommendation;
http://www.w3.org/TR/rdf‐mt/.

Heller, B., Herre, H. (2004). “Ontological Categories in GOL” in Axiomathes; Vol. 14‐1, p.57–
76.

Hendler, James (2001). “Agents and the Semantic Web” in IEEE Intelligent Systems; Vol.16;
p. 30–37.

Horrocks, I.; Patel‐Schneider, P. F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. (2004). “SWRL: A
semantic web rule language combining OWL and RuleML”; W3C Member submission.

Kagal, L.; Finin, T.; Johshi, A. (2003). “A Policy Language for Pervasive Computing
Environment.” in Proceedings of IEEE Fourth International Workshop on Policy for
Distributed Systems and Networks.

Kalra, N.; Dias, M.B.; Zlot, R.M.; Stentz, A. (2005). “Market‐Based Multirobot Coordination: A
Comprehensive Survey and Analysis”; tech. report CMU‐RI‐TR‐05‐16, Robotics Institute,
Carnegie Mellon University.

Katasonov, Artem; Terziyan, Vagan (2007). “SmartResource Platform and Semantic Agent
Programming Language (S‐APL)” in Lecture Notes in Computer Science; Vol. 4687; p.
25–36; Berlin, Heidelberg: Springer.

68

Katasonov, Artem; Terziyan, Vagan (2008). “Semantic Agent Programming Language (S‐
APL): A Middleware Platform for the Semantic Web” in The IEEE International
Conference on Semantic Computing The IEEE International Conference on Semantic
Computing; p. 504–511.

Keeney, Ralph L.; Raiffa, Howard; Meyer Richard (1993). Decisions with Multiple Objectives
Preferences and Value Tradeoffs. Cambridge University Press.

Kephart, J.O.; Walsh, W.E. (2004). “An artificial intelligence perspective on autonomic
computing policies” in Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks; p. 3–12.

Koestler, A. (1967). The Ghost in the Machine. Hutchinson & Co: London.

Koivunen, Marja‐Riitta; Miller, Eric (2001). “W3C Semantic Web Activity” in Semantic Web
Kick‐Off in Finland ‐ Vision, Technologies, Research, and Applications; HIIT Publications:
Helsinki.

Jennings, Nichola (2000). “On agent‐based software engineering” in Artificial Intelligence;
Vol. 117, p. 277–296.

Lymberopoulos, L.; Lupu, E.; Sloman, M. (2002). “An adaptive policy based management
framework for differentiated services networks” in IEEE Third International Workshop
on Policies for Distributed Systems and Networks; Monterey, California.

MacKie‐Mason, J. K.; Varian, H. R. (1995). Generalized Vickrey auctions. Technical Report,
University of Michigan.

Malone, T. W.; Fikes, R. E.; Grant, K. R.; Howard, M. T. (1988). “Enterprise: A market‐ like
task scheduler for distributed computing.” in The Ecology of Computation; North‐
Holland, New York.

Manola, Frank; Miller, Eric (2004). “RDF Primer” W3C Recommendation;
http://www.w3.org/TR/rdf‐primer/.

McAfee, R, Preston; McMillan, John (1987). “Auctions and bidding” in Journal of Economic
Literature. Vol. 25, p. 699–738.

McGuinness, Deborah L.; van Harmelen, Frank (2004). “OWL Web Ontology Language
Overview” W3C Recommendation; http://www.w3.org/TR/owl‐features/.

Mika, P. (2004). "Foundations for Service Ontologies: Aligning OWL‐S to DOLCE," in Proc.
13th World Wide Web Conf. (WWW 2004); ACM Press, p. 56–572.

Niles, Ian; Pease, Adam (2001). “Towards a standard upper ontology” in Proceedings of the
international conference on Formal Ontology in Information Systems; p. 2–9.

Oberender, Peter; Fehl, Ulrich (2004). Grundlagen der Mikroökonomie: eine Einführung in
die Produktions‐, Nachfrage‐ und Markttheorie. München: Vahlen.

Oldham, N.; Verma, K.; Sheth, A.; Hakimpour, F. (2006). “Semantic WS‐Agreement Partner
Selection” in 15th International World Wide Web Conference (WWW2006).

Rosenfeld, Louis; Morville, Peter (2002). Information Architecture for the World Wide
Web; O’Reilly.

69

Rothkopf, Michael; Peke, Aleksandar;􏱓Harstad, Ronald (1998). “Computationally
Manageable Combinatorial Auctions” in Management Science; Vol. 44‐8, p. 1131–1147.

Russell, Stuart, and Peter Norvig (1995). Artificial Intelligence: A Modern Approach.
Berkeley: Prentice Hall.

Sandholm, Tuomas; Lesser, Victor (1995). “Issues in automated negotiation and electronic
commerce: Extending the contract net framework.” in Proceedings of the First
International Conference on Multi‐Agent Systems (ICMAS’95).

Sandholm, Tuomas (2002) “Algorithm for optimal winner determination in combinatorial
auctions” in Artificial Intelligence; Vol. 135; p. 1–54.

Sen, Amartya K.; Williams, Bernard A. O. (1982). Utilitarianism and beyond; Cambridge
University Press: New York.

Simon, Jonathan; Smith, Barry (2004) “Using Philosophy to Improve the Coherence and
Interoperability of Applications Ontologies: A Field Report on the Collaboration of
IFOMIS and L&C” in Proceedings of First Workshop on Philosophy and Informatics
Cologne.

Smith, Adam, (1937). An Inquiry into the Nature and Causes of the Wealth of Nations;
Random House (Modern Library): New York 1776; Reprint .

Smith, Reid D. (1980). “The Contract Net Protocol: High‐Level Communication and Control
in a Distributed Problem Solver” in IEEE TRANSACTIONS ON COMPUTERS; Vol. 29.

Skylogiannisa, Thomas; Antonioua, Grigoris; Bassiliadesc, Nick; Governatorid, Guido;
Bikakisa, Antonis (2007). “DR‐NEGOTIATE – A system for automated agent negotiation
with defeasible logic‐based strategies” in Data & Knowledge Engineering, Vol. 63; p.
362–380.

Tamma, Valentina; Aart, Chris; Moyaux, Thierry; Paurobally, Shamimabi; Lithgow‐Smith,
Ben; Wooldridge, Michael (2005). “An Ontological Framework for Dynamic
Coordination” in The Semantic Web p. 638–652.

Terziyan, Vagan; Katasonov, Artem; Kaykova, Olena; Khriyenko, Oleksiy; Loboda, Oleksiy;
Naumenko, Anton; Nikitin, Sergiy (2007). “The Central Principles and Tools of
UBIWARE”; Technical Report (Deliverable D 1.1); UBIWARE Tekes Project, Agora
Centre, University of Jyväskylä;
http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_Restricted/D1_1.pdf.

Terziyan, Vagan; Katasonov, Artem; Kaykova, Olena; Khriyenko, Oleksiy; Loboda, Oleksiy;
Naumenko, Anton; Nikitin, Sergiy (2008). “UBIWARE Platform Prototype v.1.0”;
Technical Report (Deliverable D 1.3); UBIWARE Tekes Project, Agora Centre, University
of Jyväskylä; http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_Restricted/D1_3.pdf.

Thomas, Panagiotis; Teneketzis, Demosthenis; MacKie‐Mason, Jeffrey K. (2000). “A Market‐
Based Approach to Optimal Resource Allocation in Integrated‐Services Connection‐
Oriented Networks” in Proceedings of the Fifth INFORMS Telecommunications
Conference; Boca Raton: Florida.

Vázquez‐Salceda, J.; Dignum, V.; Dignum, F. (2005). “Organizing Multiagent Systems” in
Autonomous Agents and Multi‐Agent Systems; Vol. 11, p. 307–360.

Vries, Sven; Vohra, Rakesh (2003). “Combinatorial Auctions: A Survey” in INFORMS
JOURNAL ON COMPUTING; Vol. 15; p. 284‐309.

70

Warnecke, H.; Hüser, M. (1995). The Fractal Company – A Revolution in Corporate Culture.
Berlin: Springer.

Wolfstetter, Elmar (1996). “Auctions: An introduction.” in Journal of Economic Surveys; Vol.
10(4); p. 367–420.

White, S.R.; Hanson, J.E.; Whalley, I.; Chess, D.M.; Kephart, J.O. (2004).“An architectural
approach to autonomic computing” in Proceedings of IEEE first international conference
on autonomic computing; p. 2–9; New York.

Ygge, Fredrik; Akkermans, Hans; Andersson, Arne (1996). “A Multi‐Commodity Market
Approach to Power Load Management” in Proceedings of the International Conference
on Multi Agent Systems.

Zou, Youyong; Finin, Tim; Ding, Li; Chen, Harry; Pan, Rong (2003). “Using semantic web
technology in multi‐agent systems: a case study in the TAGA trading agent environment”
in Proceedings of the 5th international conference on Electronic commerce; Vol. 50; p.
95–101.

Zlot, Robert (2004). Complex Task Allocation for Multirobot Coordination. A thesis
proposal.

