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Abstract: Managing knowledge by maintaining it according to dynamic context is 
among the basic abilities of a knowledge-based system. The two main 
challenges in managing context in Bayesian networks are the introduction of 
contextual (in)dependence and Bayesian multinets. We are presenting one 
possible implementation of a context sensitive Bayesian multinet – the 
Bayesian Metanetwork, which implies that interoperability between 
component Bayesian networks (valid in different contexts) can be also 
modelled by another Bayesian network. The general concepts and two kinds of 
such Metanetwork models are considered. The main focus of this paper is 
learning procedure for Bayesian Metanetworks. 
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1. INTRODUCTION 

Creating and managing knowledge according to different levels of 
possible context – are among the basic abilities of an intelligent system. 
Multilevel representation of a context allows reasoning with contexts 
towards solution of the following problems [9]:  
– to derive knowledge interpreted using all known levels of its context; 
– to derive unknown knowledge when interpretation of it in some context 

and the context itself are known; 
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– to derive unknown knowledge about a context when it is known how the 

knowledge is interpreted in this context; 
– to transform knowledge from one context to another one. 

Metanetwork-based models (e.g. the Semantic Metanetworks, the 
MetaPetrinets, etc.) have proved to be more powerful tools for knowledge 
representation in the presence of multiple contexts [8, 9].  

A Bayesian network is known to be a valuable tool for encoding, learning 
and reasoning about probabilistic (casual) relationships. The Bayesian 
network for a set of variables X ={X1, …, Xn} is a directed acyclic graph 
with the network structure S that encodes a set of conditional independence 
assertions about variables in X, and the set P of local probability 
distributions associated with each variable [4].  

The two main challenges in utilizing context in Bayesian networks are 
the introduction of contextual independence [1] and Bayesian multinets. A 
recursive Bayesian multinet was introduced by Pena et al. [6] as a decision 
tree with component Bayesian networks at the leaves. The key idea was to 
decompose the learning Bayesian network problem into learning component 
networks from incomplete data.  

The main goal this research is to study another multiple Bayesian model 
– the Bayesian Metanetwork, which implies that interoperability between 
component Bayesian networks (valid in different contexts) can be also 
modelled by another Bayesian network. Such models suit well to e.g. user 
profiling applications where different probabilistic interrelations within 
predictive features from user’s profile can be controlled by probabilistic 
interrelations among the contextual features, and other applications that 
require the formalism to manage two-level uncertainty or even multilevel 
uncertainty. The combination of the ideas of Metamodels and Bayesian 
network resulted to a refined and powerful formalism of a Bayesian 
Metanetwork.  

The rest of the paper is organised as follows. In Section 2 we briefly 
introduce the formalism of Bayesian Metanetwork. In Section 3 we suggest 
the learning procedure for Bayesian Metanetwork. We conclude in 
Section 4.  

2. THE BAYESIAN METANETWORKS 

In our previous work [10], Bayesian Metanetwork formalism was used to 
model user preferences in mobile electronic commerce. Specific features and 
constraints of the mobile commerce environment demand the new flexible 
models of knowledge management. Such models assume to deal with the 
causal probabilistic relations in the cases when changes of a context occur. It 
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was also shown that the Bayesian Metanetwork provides enough flexibility 
to be a powerful formalism also for many other data mining tasks [12].  

Definition. The Bayesian Metanetwork is a set of Bayesian networks, 
which are put on each other in such a way that the elements (nodes or 
conditional dependencies) of every previous probabilistic network depend on 
the local probability distributions associated with the nodes of the next level 
network.  

The Bayesian Metanetwork is a triplet: MBN = (BN, R, P),  where BN = 
{BN1, BN2, …BNn} is a set of Bayesian networks, each of which is 
considered on the appropriate level according to the index; R = {R1,2, 
R2,3…Rn-1,n} is a set of sets of interlevel links; P is a joint probability 
distribution over the Metanetwork. 

Each Ri,i+1 is a set of interlevel links between i and i+1 levels. We have 
proposed 2 types of links: 
– Rv-e is a link “vertex-edge” meaning that stochastic values of vertex vik in 

the network BNi correspond to the different conditional probability tables 
Pk(vi-1,j | vi-1,pj) in the network BNi-1; 

– Rv-v is a link “vertex-vertex” meaning that stochastic values of vertex vir 
in the network BNi correspond to the different relevance values of vertex 
vi-1,r in the network BNi-1. 
According to the introduced two types of interlevel links we consider two 

models of the Bayesian Metanetwork: 
– C-Metanetwork, which has interlevel links of Rv-e type used for managing 

conditional dependencies (Conditional Dependencies Metanetwork); 
– R-Metanetwork, which has interlevel links of Rv-v type used for 

modelling relevant feature selection (Relevance Metanetwork). 

2.1 Bayesian C-Metanetwork for Managing Conditional 
Dependencies 

In a C-Metanetwork the context variables are considered to be on the 
second (contextual) level to manage the conditional probabilities associated 
with the predictive level of the network [10, 12]. The sample of C-
Metanetwork projected to 2-D space is presented in Figure 1. 

Standard Bayesian inference is applied in the Bayesian network of each 
level. The examples and rules of propagation through the whole 
C-Metanetwork we have presented in [10, 12]. 

The two-level Metanetwork can be easily extended to the multilevel 
(multicontext) Metanetwork. In principle, we can assume that a Bayesian 
Metanetwork may have as many levels as necessary.  
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Figure 1. The sample of a Bayesian C-Metanetwork. The nodes of the 2nd-level network 
correspond to the conditional probabilities of the 1st-level network P(B|A) and P(Y|X). The 
directed arc in the 2nd-level network corresponds to the conditional probability 
P(P(Y|X)|P(B|A)) 

2.2 The Bayesian R-Metanetwork for Modelling 
Relevant Feature Selection 

The Bayesian Metanetwork can be also used as a tool for the relevant 
feature selection. In R-Metanetwork the context variables are again 
considered as the higher-level control upon the basic network with predictive 
variables [10, 12]. Values of the context variables are assumed to have an 
influence to the relevancies of the variables on the predictive level.  

We consider relevance value as a probability of importance of the 
variable to the inference of target attribute in the given context.  

Contextual relevance network can be defined over the given predictive 
probabilistic network as it is shown in Figure 2.  

 

X 

Y 

P(X) 

P(Y)-?

P(Y|X)P(Ψ(X)|Ψ(A)) 

A 

P(A) Ψ(A) Ψ(X)

 

Figure 2. The simple relevance network with the attributes ψ(A), ψ(X) and the conditional 
probability P(ψ(X)| ψ(A)) defined over the predictive network with the attributes A, X, Y and 
the conditional probability P(Y|X) 
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The Bayesian R-Metanetwork in Figure 2 encodes the conditional 

dependencies over the relevancies and contains:   
– the relevance predicate: ψ(X) = “yes”, if parameter X is relevant; ψ(X) = 

“no”, if parameter X is not relevant; 
– the relevance value: ψX = P(ψ(X) = “yes”). 

Standard Bayesian inference is applied to the Bayesian network of each 
level. The examples and rules of propagation through the whole 
R-Metanetwork we have presented in [10, 12]. 

3. LEARNING BAYESIAN METANETWORKS 

In this Section we suggest the learning procedures for Bayesian 
Metanetworks. Both structure learning and parameter learning are 
considered.  

A number of methods for learning a Bayesian network were developed 
and are in use, see e.g. [2, 4, 5]. Such methods can be applied for learning 
component Bayesian networks on each level of the Metanetwork. The main 
challenge of this work was the extension of the standard learning procedures 
for the case of multilevel probabilistic Metanetworks to enable learning 
interlevel relationships.  

Let’s consider the following learning task: 
Given training set D of training examples <X1, X2, … Xn, Y>, 
Goal to restore: 

– the set of levels of Bayesian Metanetwork {l1,, l2,, …lL}, each level is a 
Bayesian network;  

– the interlevel links for each pair of successive levels {lr , lr+1}; 
– the network structure and parameters at each level, particularly 

probabilities P(vi) and P(vi|parents(vi)) for each variable vi. 
We suggest the following learning procedure for Bayesian Metanetworks 

consisting of four stages; the last three of them are iteratively repeated at 
each level of the Metanetwork. 

Stage 1. Division of attributes among the levels. The task of this stage is 
to divide the input vector of attributes <X1, X2, … Xn> into the predictive, 
contextual and perhaps metacontextual attributes. According to this division 
the levels of the Metanetwork will be built. Research in the context learning 
is rather active nowadays. Several fundamental works are published in this 
field and suggest the criteria for detecting the contextual variables, e.g. [11, 
13]. We are using these criteria as they are presented in these works. We 
consider metacontextual variables as contextual variables for contextual 
variables.  
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Stage 2. Learning the network structure at the current level can be made 
by existing methods [2, 4, 5]. If the node ordering is known then the method 
of Cheng and Greiner is rather attractive and easy [2]. We used this method 
in our experiments.  

It is worth to mention that for the R-Metanetwork the stage 2 returns only 
the maximal size model. Later, when the Metanetwork will be in use, the 
smaller substructure can be used according to the learned relevancies of 
attributes. 

Stage 3. Learning the interlevel links between the current and subsequent 
levels. This is a new stage that has been added specifically for a Bayesian 
Metanetwork learning. This stage is described below both for the 
C-Metanetwork and for the R-Metanetwork.  

Stage 4. Learning the parameters in the network at the current level is 
made by the standard procedure just taking into account the dynamics of 
parameters’ values in different contexts.  

If the context level is not empty, then the stages 2, 3 and 4 are repeated 
for the next-level network. 

3.1 Learning Interlevel Links in C-Metanetwork 

In Section 2, we have noticed that the vertex of every next level in a 
Bayesian C-Metanetwork is associated with the possible conditional 
probability matrix of the Bayesian network from the previous level. We will 
describe the establishment of such interlevel links in a C-Metanetwork.  

Consider the fragment of the C-Metanetwork from Figure 3. If the 
standard parameter learning algorithm knows the causal relationships 
between the variables it will return the single conditional probability table 
P(B|A): Pik (B = bi | A = ak ) for the arc A→B and the single conditional 
probability table P(Y | X): Prs(Y = yr | X = xs ) for the arc X→Y. The standard 
algorithm processes the whole training set <A, B, X, Y>. 

Assume there are several contexts in which this network fragment is 
observed. The parameters of the network in different contexts most probably 
will be different as well. In such a case it is reasonable to study each context 
separately and to calculate the more accurate parameters in each context 
instead of “averaging” probabilities over all the contexts. 

Divide the whole vector <A, B, X, Y> of the training set into n clusters 
<A, B, X, Y>1, <A, B, X, Y>2, …,<A, B, X, Y>n according to the values of 
context attributes for the causal dependence A→B. Applying the learning 
procedure in each data cluster <A, B, X, Y>j we get separately n conditional 
probability matrixes Pj (B | A): j ik i kP (B = b  | A = a  ), j = 1,n . 

In the same way we divide the vector <A, B, X, Y> into m clusters <A, B, 
X, Y>1, <A, B, X, Y>2, …,<A, B, X, Y>m according to the values of context 
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attributes for causal dependence X→Y and get separately m conditional 
probability matrixes Pt (Y | X): t rs r sP (Y = y  | X  = x ) ,  t = 1,m . 

 
Figure 3. Different probability tables corresponding to different contexts are associated with 
vertexes of the second-level Bayesian network 

Thus in each context the Bayesian network gets different parameters 
(Figure 3) and will be managed by the second-level contextual network. 

The second level of the Metanetwork is entered for management of the 
probability tables in the first-level network. The sets of matrixes {Pj(B|A)} 
and {Pt(Y|X)} can be considered as the random variables U and W at the 
second level of the Metanetwork. The variable U will have as many values, 
as we consider contexts for the causal dependence А→B. Each value uj will 
correspond to the probability matrix Pj(B|A). In the same way we define the 
variable W with the values wt which correspond to Pt(Y|X).  

If the causal probabilistic dependence occurs between the contextual 
variables, then we learn Bayesian dependence W→U at the second level of 
the Metanetwork. The learning procedure will result in composing the 
(meta)matrix P(W|U), i.e. the matrix of matrixes: 

j tP(W |U) = {P((W  = P (Y | X))| (U = P (B | A))}, j = 1,n,  t = 1,m.  
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3.2 Learning interlevel links in R-Metanetwork 

In Section 2, we have mentioned that the vertex of each next level in the 
Bayesian R-Metanetwork is associated with the possible relevancies of the 
attributes of the previous Bayesian network. We will describe the 
establishment of such interlevel links in the Bayesian R-Metanetwork.  

Consider the fragment of the R-Metanetwork in Figure 4.  

 
Figure 4. Different relevancies corresponding to different contexts are associated with 
vertexes of the second-level Bayesian network  

Assume Y is a target attribute. The standard feature selection method will 
process the whole training set <A, B, X, Y> and will return some relevance 
estimations for each predictive attribute: Ψ(A), Ψ(B), Ψ(X). The good 
overview of the existing feature selection methods is given in [3, 7]. We 
consider the relevance of the target attribute Ψ(Y) is equal to 1. 

Assume there are several contexts in which this network fragment is 
observed. It is possible that relevancies of attributes will be different in 
different contexts. As it was done in the case of C-Metanetwork, here it is 
also reasonable to study each context separately and to calculate the more 
accurate relevancies in each context instead of “averaging” relevancies 
Ψ(A), Ψ(B), Ψ(X) over all contexts. Different relevancies can lead to 
different network structures in different contexts. 
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Divide the whole vector <A, B, X, Y> of the training set into n clusters 

<A, B, X, Y>1, <A, B, X, Y>2, …,<A, B, X, Y>n according to the values of 
context attributes. Applying the learning procedure in each data cluster 
<A, B, X, Y>j we get separately n values of relevancies Ψj(A), Ψj(B), Ψj(X). 

Thus we get in each context the Bayesian network with different 
relevancies of attributes (Figure 4). The second level of the Metanetwork is 
entered for management of the feature selection in the first-level network. 
The sets of matrixes {Ψj(A)}, {Ψj(B)}, {Ψj(X)} can be considered as the 
random variables U, V and W at the second level of the Metanetwork.  

If the causal probabilistic dependence occurs between the contextual 
variables, then we learn the Bayesian dependence W→U at the second level 
of the Metanetwork. The learning procedure will result in composing the 
(meta)matrix P(W|U) as follows: 

ij tj tP(W |U) = {P((W = (X))| (U =  (A))= (X | A)},  j = 1,n,  t = 1,m.ψψ ψ   

4. CONCLUSIONS 

The general concept and the two types of a Bayesian Metanetwork are 
considered as tools to present the second order uncertainty. C-Metanetwork 
allows managing the conditional dependencies of the Bayesian network and 
assumes context-based conditional dependencies between conditional 
dependencies. R-Metanetwork assumes that the relevancies of predictive 
variables in the Bayesian network are random variables themselves. This 
metanetwork provides a tool for recalculating attributes’ relevancies 
depending on context change. Generally a Bayesian Metanetwork is a 
multilevel structure of component Bayesian networks. The controlling extra 
level(s) in a Metanetwork is used to select the appropriate parameters or 
substructure from the basic network based on the contextual attributes. The 
accent in this paper is done to the learning procedure for Bayesian 
Metanetworks. Both structure learning and parameter learning are 
considered. The main challenge of this work is the extension of the standard 
Bayesian learning procedures with the algorithm of learning the interlevel 
links. The experiments (made outside the scope of this paper due to the 
domain specifics) on the data from the highly-contextual domain have 
shown the effectiveness of the proposed models and learning procedures. 
The multiple-factor concept of radiation risk for population has been 
modelled, and the leaning procedure has shown quite good correlation of the 
predicted results with expert estimations. The subjective (social) factors, 
which influence the radiation risk distribution, have been modelled at the 
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contextual level of the Metanetwork. Still more experiments are needed to 
support the concept of a Bayesian Metanetwork and to specify concrete areas 
where its implementation will be reasonable. Just now we have some 
evidence to assume Bayesian Metanetwork to be a powerful tool in cases 
where structure (or strengths) of causal relationships between observed 
parameters of an object essentially depends on a context. Also it can be a 
useful diagnostic model for such an object, which diagnosis depends on 
different set of observed parameters depending on a context. 

REFERENCES 

[1]  Boutiler, C., Friedman, N., Goldszmidt, M., Koller, D., Context-Specific Independence 
in Bayesian Networks, In: Proceedings of the 12-th Conference on Uncertainty in 
Artificial Intelligence (UAI-96), 1996, 115-123.  

[2] Cheng J., Greiner R.. Learning Bayesian Belief Network Classifiers: Algorithms and 
System, In: Proceedings of the Fourteenth Canadian Conference on Artificial 
Intelligence (AI-2001), 2001, 141-151.   

[3]  Dash, M., Liu, H., Feature Selection for Classification, Intelligent Data Analysis 1 (3) 
1997, 131-156.  

[4]  Heckerman, D., A Tutorial on Learning with Bayesian Networks. Technical Report 
MSR-TR-95-06, Microsoft Research, March, 1995.  

[5] Madigan D., Raftery A., Volinsky C., Hoeting, J. Bayesian Model Averaging, In: 
Proceedings of the AAAI Workshop on Integrating Multiple Learned Models, Portland, 
1996, 77-83.  

[6] Pena, J., Lozano, J.A., Larranaga, P., Learning Bayesian Networks for Clustering by 
Means of Constructive Induction, Machine Learning, 47(1), 2002, 63-90.  

[7] Siedlecki W., Skalansky J., On Automatic Feature Selection, International Journal of 
Pattern Recognition and Artificial Intelligence, 2, 1988, 197-220.  

[8] Terziyan V., Multilevel Models for Knowledge Bases Control and Automated 
Information Systems Applications, Doctor of Technical Sciences Degree Thesis, 
Kharkov State Technical University of Radioelectronics, 1993.  

[9] Terziyan V., Puuronen S., Reasoning with Multilevel Contexts in Semantic 
Metanetworks, In: P. Bonzon, M. Cavalcanti, R. Nossun (Eds.), Formal Aspects in 
Context, Kluwer Academic Publishers, 2000, 97-126.  

[10] Terziyan V., Vitko O., Bayesian Metanetworks for Modelling User Preferences in 
Mobile Environment. In: Proceedings of the German Conference on Artificial 
Intelligence (KI-2003), Hamburg, 15-18 September 2003 , LNCS, Vol. 2821, Springer, 
370-384.  

[11] Turney P. The identification of context-sensitive features: a formal definition of context 
for concept learning, In: Proceedings of the Workshop on Learning in Context-Sensitive 
Domains at the Thirteenth International Conference on Machine Learning (ICML-96),, 
1996, 53-59.  

[12] Vitko O., The Multilevel Probabilistic Networks for Modelling Complex Information 
Systems under Uncertainty. Ph.D. Thesis, Kharkov National University of 
Radioelectronics, 2003.  

[13] Widmer G. Tracking Context Changes through Meta-Learning, Machine Learning, 
27(3), 1997, 259-286.  


