

SmartResource Platform
and

Semantic Agent Programming Language (S-APL)

Developer’s guide

Artem Katasonov

03.04.2007 version 1.0

Industrial Ontologies Group
University of Jyväskylä

email: artem.katasonov@jyu.fi

Contents

1 General Description...3

2 Semantic Agent Programming Language (S-APL)...7

2.1 Initial Beliefs ...8

2.2 Initial Goals ...8

2.3 Behavioral Rules ...9

3 Available Reusable Atomic Behaviors (RABs) ..12

3.1 Embedded actions ...12

3.2 Local actions ...13

3.3 Inter-agent actions ...18

3.4 Core actions...25

3.5 Graphical User Interfaces (GUI) ...27

4 Application Programming Interfaces ..29

4.1 Reusable Atomic Behavior (RAB)..29

4.2 Semantic Statement ...31

4.3 Variables Binding Manager ..33

4.4 Interface Event Handler ..35

4.5 SmartResource Agent GUI..36

4.6 Working with HTTP..37

1 General Description

This section provides a general description of the SmartResource Platform.

The SmartResource Platform is a development framework for creating multi-agent systems. The
SmartResource Platform is built on the top of the Java Agent Development Framework (JADE).
JADE is a Java implementation of IEEE FIPA specifications. If you need information on FIPA’s
general architecture and information on how it is realized in JADE, consult FIPA documents (at
http://www.fipa.org/) and JADE documentation (at http://jade.tilab.com/).

The central to the SmartResource Platform is the architecture of a SmartResource agent depicted
in Figure 1. It can be seen as consisting of three layers: Reusable Atomic Behaviors (RABs),
Behavior Models corresponding to different roles the agent plays, and the Behavior Engine. An
additional element is the storage for beliefs and goals of the agent.

LL ii
vv ee

bb ee

hh aa
vv ii

oo rr

Behavior
models

BB
ee hh

aa vv
ii oo

rr

 AA
ss ss

ii gg
nn

RR
oo ll

ee

bb ee
hh aa

vv ii
oo rr

 Beliefs and goals
storage

SSmmaarrttRReessoouurrccee AAggeenntt CCoorree ..ccllaassss

.c
la

ss

PPooooll ooff AAttoommiicc
BBeehhaavviioorrss

RReeppoossiittoorryy ooff
RRoolleess

RReeuussaabbllee aattoommiicc
bbeehhaavviioorrss ((RRAABBss))

BB
ee hh

aa vv
ii oo

rr

BB
ee hh

aa vv
ii oo

rr

BB
ee hh

aa vv
ii oo

rr

Figure 1. SmartResource agent architecture

A belief is a statement about the agent itself, the environment or the present situation, which is
believed to be true. A goal is a statement about the agent itself, the environment or the situation,
which is not believed to be true, but is desired to become true. Both beliefs and goals in the
SmartResource Platform are based the RDF data model, i.e. any belief or goal is a subject-
predicate-object triple, e.g. “John Loves Mary”.
A reusable atomic behavior (RAB) is a piece of Java code implementing a reasonably atomic
function. Therefore, RABs can be seen as the agent’s perceptors and actuators. As the name
implies, RABs are assumed to be reusable across different applications, different agents,
different roles and different interaction scenarios. Obviously, RABs need to be parameterizable.

A description of RABs provided with the SmartResource Platform is given in Chapter 3. A
description of application programming interfaces needed for developing new RABs is given in
Chapter 4.

In the SmartResource Platform, the behavior of an agent is defined by the roles it plays in one or
several organizations. Some examples of the possible roles: operator’s agent, feeder agent, agent
of the feeder N3056, fault localization service agent, ABB fault localization service agent, etc.
Obviously, a general role can be played by several agents. On the other hand, one agent can (and
usually does) play several roles.

A behavior model is document that is supposed to specify a certain organizational role, and,
therefore, there is one-to-one relation between roles and behavior models. In the SmartResource
Platform, behavior models are presented in a high-level rule-based language, to which we refer
to as Semantic Agent Programming Language, with shorter forms semantic APL or just S-APL.
S-APL is based on the RDF data model, i.e. the whole document can be seen as a set of subject-
predicate-object triples. A behavior model consists of a set of beliefs representing the knowledge
needed for playing the role and a set of behavior rules. Roughly speaking, a behavior rule
specifies conditions of (and parameters for) execution of various RABs. A description of S-APL
is given in Chapter 2.

The behavior engine is the same for all the SmartResource agents (this of course means that each
agent has a copy of it). The behavior engine consists of the agent core and the two core behaviors
that we named “Assign Role” and “Live”.

The AssignRole behavior processes an S-APL document, loads specified initial beliefs and goals
into the beliefs and goals storage, and parses the behavior rules (see Section 3.4.2). In addition, it
registers the new role with the system Directory Facilitator agent. Note that it is recommended
that if a behavior model is to specify the need of interaction with another agent, that agent should
be specified by its role, not the name or another unique identifier of a particular agent. Then,
DFLookup atomic behavior (see Section 3.4.1) can find with DirectoryFacilitator names of
agents playing a particular role. If several agents play the role needed, the behavior model is
supposed to include some rules specifying a mechanism of resolving such a situation, e.g.
random select, auction, etc. Different such mechanisms can of course be assigned to resolving
conflicts with respect to different roles. See some examples in Section 3.2.6.

When an agent is created it has to be given at least one behavior model to start working.
Therefore, the agent’s core needs to directly engage the AssignRole behavior for the model(s)
specified. However, all the later invocations of AssignRole, i.e. adding new roles, are to be
specified in some behavior models. Therefore, AssignRole has the duality of being a part of the
behavior engine and a RAB in the same time.

The Live behavior implements the run-time cycle of an agent. Roughly speaking, it iterates
through all the behavior rules, checks them against existing beliefs and goals, and executes the
appropriate rules. Execution of a rule normally includes execution of a RAB and performing a
set of additional mental actions, i.e. adding and removing some beliefs (see Section 2.3). At least
at the present stage, if there are several rules that are executable, all of them are executed.

As can be seen from Figure 1, the SmartResource Platform allows agents to access behavior
models from an external repository, which is assumed to be managed by the organization which
“hires” the agents to enact those roles. It is done either upon startup of an agent, or later on.

As can also be seen from Figure 1, the SmartResource Platform allows agent on-demand access
even of RABs. If an agent plays a role, and that role prescribes it to execute an atomic behavior
that the agent is missing, the agent can download it from the repository of the organization. In a
sense, the organization is able to provide not only instructions what to do, but also the tools

enabling doing that. Physically, a RAB is delivered as either .class file or a .zip file (in case
when the RAB has several .class files).

The present version SmartResource Platform provides the behavior model OntologyAgent.rdf
along with used in it RAB OntologyLookupBehavior. By starting an agent based on this model,
one creates an agent that provides access to both repository of roles and pool of atomic behaviors.
In the present version, the repository for such an agent is organized simply as the folder
“DB_ontology\” and the pool as the folder “DB_ontology\classes\” (the structure of the
packages is to be followed).

The SmartResource Platform provides the behavior model startup.rdf, which has to be loaded by
an agent at startup in order to enable it to remotely access behavior models from an
OntologyAgent. For accessing new roles in run-time, the convention described in Section 3.4.2 is
to be used. For roles specified on startup of the agent, the agent’s core takes care of it. In
addition, startup.rdf includes the rule for engaging DFLookupBehavior. This rule is obviously
needed for resolving the OntologyAgent role. However, it is also enough for any future needs of
resolving roles, just the convention described in Section 3.4.1 is to be followed.

The SmartResource Platform provides also the behavior model RABLoader.rdf, which has to be
loaded by an agent in order to enable it to remotely access atomic behaviors from an
OntologyAgent. It includes rules for requesting, receiving, and (if needed) unzipping the
behavior files.

An agent for the SmartResource Platform can be started in two ways. First, an agent can create
another agent using CreateAgentBehavior RAB (see Section 3.3.1). Second, an agent can be
started upon startup of the whole platform. In such a case, the parameters are the same as those
of CreateAgentBehavior, only need to be structured according to JADE conventions:
<name>:smartresource.core.SmartResourceAgent(<scripts>,<roles>)

where <name> is the name of the agent, <scripts> is the star(*) separated list of the initial
behavior models, <roles> is plus(+) separated list of the roles. Parameter <roles> is not
mandatory and needed only if startup.rdf is one of the models given in <scripts>.

Below is an example of normal (minimal) Windows batch file for starting an application build
using the SmartResource Platform is:
@setlocal

@set classpath=%classpath%;.\lib\jade\JadeLeap.jar;.\lib\sesame\rio.jar;.\lib
\sesame\openrdf-model.jar;.\lib\sesame\openrdf-util.jar

@set agent1=ontology:smartresource.core.SmartResourceAgent(DB/_ontology/Ontol
ogyAgent.rdf)

@set agent2=starter:smartresource.core.SmartResourceAgent(DB/startup.rdf,Plat
formStarter+RABLoader)

@set agents=%agent1%;%agent2%

@java jade.Boot -port 80 %agents%

@endlocal

Note that the classpath declaration needs to be extended if some special libraries are to be
utilized by agents (in RABs).

There is also a third method of starting a new agent, which can be utilized in some specific cases.
It is described in Section 4.6.

Technically, the SmatResource agent’s core is an extension (subclass) of JADE’s Agent class. A
common RAB is an extension of JADE’s SimpleBehavior class. As it will be explained in
Chapter 4, due to technical issues related to organizing external interfacing, in addition to regular
RABs, we differentiate three types of special RABs: GUI, HTTP server, and event handler (for
HTTP). Conceptually, they all treated as close as possible to common RABs though.

2 Semantic Agent Programming Language (S-APL)

This chapter describes the RDF/XML syntax of the Semantic Agent Programming Language (S-
APL) through its three constructs: Belief, Goal and Behavior. At the present stage, the
namespace “gb:” is defined as “xmlns:gb="http://www.smartresource.com/rgbdf#"“, and “x:” is
defined as “xmlns:x="http://www.smartresource.com/atomic_behaviors#"“

Any S-APL document should have the following basic structure:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:gb="http://www.smartresource.com/rgbdf#"
 xmlns:x="http://www.smartresource.com/atomic_behaviors#">
...

0..N Belief or Goal or Behavior

...
</rdf:RDF>

If a resource is specified without the namespace (mainly URI of beliefs, goals and behaviors),
e.g. <gb:Belief rdf:about="belief1">, the default dynamically-assigned namespace is used
“http://www.smartresource.com/<agent_name>/<role>/”, where <role> is defined by the name
of the S-APL document. An example is “http://www.smartresource.com/ontology/
OntologyAgent/belief1”.

In the objects of all triples, it is possible to use two constants, which we be substituted with their
values upon parsing (i.e. already in AssignRole behavior): %AgentName% - the name of the
agent, %Today% - the present date in the format “dd.mm.yyyy”.

As can be noticed, in defining/referring to beliefs and goals, S-APL does not use the RDF syntax,
but has them as literals of the form “<subject> <predicate> <object>”. The main reason for this
is inability of RDF to restrict the scope of statement. In RDF, every statement is treated as a
global truth. But for describing behavior rules, the statements are specifications of IF and THEN
conditions, not facts. Additional reason is a wish to keep S-APL documents concise and human-
readable/editable.

In S-APL, all beliefs/goals must be triples. However, at least at present stage, we do not enforce
the RDF rule that only the object can be a literal while the subject and the predicate must be
URIs. In other words, in S-APL beliefs/goals, the subject and the predicate can be literals as well.
When using URIs, a convenient way is to utilize XML’s ENTITY construct (to simulate the
namespaces mechanism). For example:
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY our "http://www.metso.com/ontology#">
<!ENTITY ph "http://www.physics.org/ontology#">
]>

<rdf:RDF
...
<gb:trueIf>&our;Environment &ph;TemperatureCelcius 23</gb:trueIf>
...

2.1 Initial Beliefs

Element: <gb:Belief>

Specifies a belief, with which the agent (in a role) will be initialized. A belief is a statement
about the agent itself, the environment or the present situation, which is believed to be true.

Fields:

Name Meaning Mandatory

gb:statement The semantic statement of the belief, in the format
(whitespace-separated) “<subject> <predicate> <object>”.
Leading and trailing whitespaces in all three elements will be
trimmed off. If only one whitespace is found, the object is set
to “?” meaning undefined. If no whitespace is found, both
predicate and object are set to “?”.

Yes

Example of usage:
<gb:Belief rdf:about="belief1">
 <gb:statement>MyDevice Is Feeder_ID_4583</gb:statement>
</gb:Belief>
<gb:Belief rdf:about="belief2">

<gb:statement>I Start GUI</gb:statement>
</gb:Belief>

2.2 Initial Goals

Element: <gb:Goal>

Specifies a goal, with which the agent (in a role) will be initialized. A goal is a statement about
the agent itself, the environment or the situation, which is not believed to be true, but is desired
to become true.

Fields:

Name Meaning Mandatory

gb:statement The semantic statement of the goal in the format as described
in the previous section.

Yes

Example of usage:
<gb:Goal rdf:about="goal1">
 <gb:statement>I Solved Problem</gb:statement>
</gb:Goal>

2.3 Behavioral Rules

Element: <gb:Behavior>

Specifies a behavioral rule. The fields trueIf, falseIf, trueIfGoalAchieved, achievesGoal, and
event describe the left side (IF) of the rule, while the rest describe the right side (THEN) of the
rule.

Fields: None of the fields is mandatory. All can appear more than once, with exception of
gb:class and gb:event (for those, the last occurrence is used).

Name Meaning

gb:trueIf Specifies a precondition, i.e. a belief that must be found in the set of the
agent’s beliefs to make the rule applicable. If several trueIf is given,
they all must be found, i.e. they can be seen as connected with AND.

gb:falseIf Specifies a negative condition, i.e. such a belief that, when found in the
set of the agent’s beliefs, makes the rule not applicable. If several falseIf
is given, any of them is enough, i.e. they can be seen as connected with
OR.

gb:achievesGoal Specifies a goal that must be found in the set of the agent’s goals to
make the rule applicable. In a sense, it specifies an expected rational
effect of the rule execution and puts a need for it as a precondition. If
several achievesGoal is given, any of them is enough, i.e. they can be
seen as connected with OR.

gb:event Specifies an interface event (either from GUI or from HTTP server) that
must be the current event to make the rule applicable. If a rule has event
specified, it will never be executed from the normal Live cycle of the
agent, but only from the interface event handling routine.

gb:trueIfGoalAchieved Specifies a sub-goal that must be achieved before an applicable rule can
be executed. If according to all the other conditions the rule is
applicable and only one or more trueIfGoalAchieved is not fulfilled, the
agent will add those to the set of its goals. In other words, the agent will
try to eventually execute a rule that is applicable. If several
trueIfGoalAchieved is given, they all need to be present in the beliefs to
make the rule executable, so they can be seen as connected with AND.
Also, all of them that are not present in the beliefs, will be added to the
set of goals at once.

gb:addOn<X> Specifies a belief that has to be added in the phase <X>. Possible values
for <X> are:

Start – add the belief when the rule is executed, before invoking the
actual behavior (e.g. RAB).

End – add the belief when the behavior has ended the execution.

Success – add when and if the behavior has ended the execution in
success.

Fail - add when and if the behavior has ended the execution in failure.

gb:removeOn<X> Specifies a belief that has to be removed in the phase <X>. Possible
values for <X> are the same as above. If the specified belief contains
“*” and matches several existing beliefs, all matching beliefs will be
removed.

gb:class Specifies the Java class implementing the behavior. This must be one of
the following: a subclass of ReusableAtomicBehavior, a subclass of
InterfaceEventHandler, a subclass of SmartResourceAgentGUI, or
SmartResourceAgentServer or its subclass.

x:<anything> A parameter that is to be passed to the instance of behavior, and has
some meaning in the context of that behavior.

Note that explicit adding or removing of goals is not supported. A goal can only be added if it
appears in trueIfGoalAchieved of an applicable rule (and not yet in the set of goals), and
removed only when either (1) a rule is executed having it among its achievesGoal or (2) in the
beginning or a Live cycle, it is found in the set of beliefs.

Note also that an additional implicit condition for whether a rule is executable is presence of the
specified Java class. If it is not found, the rule is considered as not executable, so neither beliefs
are modified nor goals are removed.

In the statements, “*” can be used with the meaning of “anything”, and “*<var>*” can be used as
variable. If variables are used, the rule is applicable/executable if the beliefs and goals of the
agent provide at least one possible binding of the values. If several bindings are possible, the first
found is taken. The left part of the rule is processed in the following order: event, trueIf,
achievesGoal, trueIfGoalAchieved, falseIf. This defines the order in which the variables are bind.
The possible set of values for a variable is searched when the variable is first encountered. After
that, values from this set can only get filtered out but no new ones can be added.

All the fields of a rule are passed as the start parameters to the instance of the behavior, not only
x:<anything>. Therefore, if needed, the behavior can have access to the context of its execution,
e.g. trueIf, addOnStart, etc. Note though that, in all the start parameters, the variables are
substituted with their values.

Example of usage: Given that the date is 8 of March, if the agent knows a woman and knows
something that she likes, start (a non-existing) GiftingBehavior to gift her that thing. A sub-goal
of this is to buy the needed thing (handled in the rule behavior2). FalseIf statements are used to
prevent the behavior to be executed twice. The belief “I Gifting <X>” is added as soon as the
rule is executed (note, this happens after the sub-goal is achieved), and removed as soon as
GiftingBehavior ends (regardless of the result). If the result is success, belief “I Gifted <X>” is
added.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.non_existing.GiftingBehavior</gb:class>
 <gb:trueIf>Date Is 08.03</gb:trueIf>
 <gb:trueIf>I Know *X*</gb:trueIf>
 <gb:trueIf>*X* Is Woman</gb:trueIf>
 <gb:trueIf>*X* Likes *thing*</gb:trueIf>

 <gb:falseIf>I Gifting *X*</gb:falseIf>
 <gb:falseIf>I Gifted *X*</gb:falseIf>
 <gb:trueIfGoalAchieved>I Bought *thing*</gb:trueIfGoalAchieved>
 <gb:addOnStart>I Gifting *X*</gb:addOnStart>
 <x:receiver>*X*</x:receiver>
 <x:object>*thing*</x:object>
 <gb:removeOnEnd>I Gifting *X*</gb:removeOnEnd>
 <gb:addOnSuccess>I Gifted *X*</gb:addOnSuccess>
</gb:Behavior>

<gb:Behavior rdf:about="behavior2">
 <gb:class>smartresource.non_existing.BuyingBehavior</gb:class>
 <gb:achievesGoal>I Bought *thing*</gb:achievesGoal>
 <x:object>*thing*</x:object>
 <gb:addOnSuccess>I Bought *thing*</gb:addOnSuccess>
</gb:Behavior>

3 Available Reusable Atomic Behaviors (RABs)

This chapter describes RABs available at the moment. Note that “outputs” specified do not
include the print outs of the stack traces of possible exceptions. “Libraries” specify libraries
needed in addition to normal Java SE and JADE ones. At the present stage, the namespace “x:”
is defined as “xmlns:x="http://www.smartresource.com/atomic_behaviors#"“

3.1 Embedded actions
There a couple of behaviors, which of course could have been implemented with separate pieces
of Java code, but are so simple that we decided to embed them into the Live behavior. Reference
to such behavior is done as @<command>.

3.1.1 @Print

Action: Prints to the screen (and to the log) specified text. Text is printed preceded by “[<present
time>] <agent’s name>: “.

Inputs:

Name Meaning Mandatory Default

x:print The text to print. Yes

Outputs: the text is printed.

Example of usage: Print ”Job is done!” when no “I Process <X>” belief is left in the agent’s
beliefs.
<gb:Behavior rdf:about="behavior1">
 <gb:class>@Print</gb:class>
 <gb:trueIf>I Have Data</gb:trueIf>
 <gb:falseIf>I Process *</gb:falseIf>
 <gb:removeOnStart>I Have Data</gb:removeOnStart>
 <x:print>Job is done!</x:print>
</gb:Behavior>

3.1.2 @ModifyGUI

Action: Sends a request to the active GUI to perform some actions, mainly related to modifying
GUI (enabling/disabling elements, putting text to labels, etc.).

Inputs: depend on specific GUI.

Outputs: none

Example of usage: Given that the GUI is SeveralButtonsGUI (see corresponding section),
disable the button that was just clicked.

<gb:Behavior rdf:about="gui_event1">
 <gb:class>@ModifyGUI</gb:class>
 <gb:event>User ClickedButton *x*</gb:event>
 <x:modify>Disable</x:modify>
 <x:target>*x*</x:target>
</gb:Behavior>

3.2 Local actions
This section describes behaviors that do not involve any other agents, i.e. have no social
component.

3.2.1 DelayerBehavior

Full name: smartresource.shared.DelayerBehavior

Action: Waits for a specified period of time, after that ends in success.

Inputs:

Name Meaning Mandatory Default

x:delay Time to wait in milliseconds. Yes

Outputs: none.

Example of usage: Wait 5 seconds, then add belief “I Send Alert”.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.DelayerBehavior</gb:class>
 <gb:trueIf>I Start Delayer</gb:trueIf>
 <gb:removeOnStart>I Start Delayer</gb:removeOnStart>
 <x:delay>5000</x:delay>
 <gb:addOnSuccess>I Send Alert</gb:addOnSuccess>
</gb:Behavior>

Libraries needed: none.

3.2.2 ExternalAppStarterBehavior

Full name: smartresource.shared.ExternalAppStarterBehavior

Action: Executes a command of the operating system. Primarily, is intended for starting external
software applications. If the command is successfully executed (it does not necessarily implies
that the application is started), ends in success. If an exception occurs, ends in failure.

Inputs:

Name Meaning Mandatory Default

x:startExternal Command to execute. Yes

Outputs: none.

Example of usage: Execute the text editor Notepad and open in it file “Dog.txt”.
<gb:Belief rdf:about="belief1">
 <gb:statement>I Have Dog</gb:statement>
</gb:Belief>
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.ExternalAppStarterBehavior</gb:class>
 <gb:trueIf>I Have *who*</gb:trueIf>
 <gb:removeOnStart>I Have *who*</gb:removeOnStart>

<x:startExternal>notepad.exe *who*.txt</x:startExternal>
</gb:Behavior>

Libraries needed: none.

3.2.3 UnzipperBehavior

Full name: smartresource.shared.UnzipperBehavior

Action: Unzips a ZIP archive. If parameter “delete” is equal to “true”, deletes the original file. If
an I/O exception occurs, ends in failure. Otherwise, ends in success.

Inputs:

Name Meaning Mandatory Default

x:input Name of ZIP file. Yes

x:delete Whether to delete the ZIP file after unzipping
the contents.

No “false”

Outputs: On success, prints to the screen “<input> is unzipped”.

Example of usage: Unzip ZIP archive whose name is defined through belief “I Unzip *zip*”,
then delete the archive.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.UnzipperBehavior</gb:class>
 <gb:trueIf>I Unzip *zip*</gb:trueIf>
 <gb:removeOnStart>I Unzip *zip*</gb:removeOnStart>
 <x:input>*zip*</x:input>
 <x:delete>true</x:delete>
</gb:Behavior>

Libraries needed: none.

3.2.4 HttpDataFetcherBehavior

Full name: smartresource.shared.HttpDataFetcherBehavior

Action: Downloads a document (e.g. an HTML page) from an Internet server and saves it to a
file. The download process is done in a separate thread, so does not block the agent. If
everything is fine, ends in success. If there is a problem with either fetching or saving, ends in
failure.

Inputs:

Name Meaning Mandatory Default

x:url URL of the document. Yes

x:saveTo Name of the file to save the document to. Yes

Outputs: Prints to the screen “Failed to retrieve <url>” if download failed.

Example of usage: Download from the site of Finnish Meteorological Institute the page with the
present weather information and forecast for Jyväskylä.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.HttpDataFetcherBehavior</gb:class>
 <gb:trueIf>*requestID* request GetData</gb:trueIf>
 <gb:falseIf>I Fetch *requestID*</gb:falseIf>
 <gb:addOnStart>I Fetch *requestID*</gb:addOnStart>
 <x:uri>http://www.fmi.fi/saa/paikalli.html?Keywords=&param=T&ne
ito=1&kunta=Jyv%E4skyl%E4</x:uri>
 <x:saveTo>DB/%AgentName%/received/*requestID*.htm</x:saveTo>
 <gb:addOnSuccess>I Fetched *requestID*</gb:addOnSuccess>
</gb:Behavior>

Libraries needed: none.

3.2.5 EmailSenderBehavior

Full name: smartresource.shared.EmailSenderBehavior

Action: Sends an email. The sending process is done in a separate thread, so does not block the
agent. If the server responds with error 451 (local error in processing) or 452 (insufficient system
storage), and parameter “waitOnFail” is given, waits specified time and tries again. If email is
sent, ends in success. Ends in failure if an exception other than error 451 or 452 occurs, or on
any exception if “waitOnFail” is not given. Also ends in failure if parameter “to” is not given or
empty.

Inputs:

Name Meaning Mandatory Default

x:smtp SMTP server to use for sending email. Yes

x:to Addresses to which the email to be sent,
divided by commas.

Yes

x:from Address to put as the outgoing address. No “no@addr.
ess”

x:cc Addresses to which a copy to be sent. No “”

x:bcc Addresses to which a blind copy is to be
sent.

No “”

x:subject Subject of the email. No “”

x:message The content of the email. No “”

x:attach Names of the files to attach to the email,
divided by comma.

No “”

x:contentType The type of the email content, e.g.
“text/plain” or “text/html”.

No “text/plain”

x:waitOnFail Time to wait in milliseconds before next
attempt of sending.

No

Outputs: On success, prints to the screen “Email to <to> is sent”. On failure, prints “Sending
email to <to> is failed!”. In case of error 451 or 452, prints to the screen “Email sending error.
Waiting <waitOnFail/1000> sec”.

Example of usage: Send email through smtp.jyu.fi server. If a problem, wait 10 seconds and try
again.
<gb:Behavior rdf:about="behavior2">
 <gb:class>smartresource.shared.EmailSenderBehavior</gb:class>
 <gb:trueIf>I SendEmail *text*</gb:trueIf>
 <gb:removeOnStart>I SendEmail *text*</gb:removeOnStart>
 <gb:addOnStart>I Send Email</gb:addOnStart>
 <x:smtp>smtp.jyu.fi</x:smtp>
 <x:to>akataso@cc.jyu.fi</x:to>
 <x:from>artem.katasonov@jyu.fi</x:from>
 <x:subject>test</x:subject>

<x:message>*text*</x:message>
 <x:waitOnFail>10000</x:waitOnFail>
 <gb:removeOnEnd>I Send Email</gb:removeOnEnd>
</gb:Behavior>

Libraries needed: JavaMail (mail.jar) and JavaBeans Activation Framework (activation.jar).
Both are included into J2EE, but need to be acquired separately for J2SE. Provided with the
SmartResource platform.

3.2.6 SimpleSelectBehavior

Full name: smartresource.shared.SimpleSelectBehavior

Action: Performs selection among several alternatives. Ends in failure if no single alternative is
found.

Inputs:

Name Meaning Mandatory Default

x:input (>1 is
allowed)

Input beliefs, must contain variables. Yes

x:output Output belief, must refer to variables defined in
“x:input”.

Yes

x:criterion Selection criterion: “random”, “minimum” or
“maximum”.

Yes

x:evaluate Formula to evaluate in case of “minimum” or
“maximum”, must refer to variables defined in
“x:input”.

Yes if the
criterion is
minimum
or
maximum

Outputs: Prints to the screen “var1=value1 var2=value2 … is selected as <criterion> <formula>”.

Example of usage: Select an agent randomly among several playing the same role.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.SimpleSelectBehavior</gb:class>
 <gb:trueIf>*role* RoleHasToBe Resolved</gb:trueIf>
 <gb:falseIf>LocateAgent RoleHasToBe Resolved</gb:falseIf>
 <gb:removeOnStart>*role* RoleHasToBe Resolved</gb:removeOnStart>
 <x:input>*role* RoleIsPlayedBy *agent*</x:input>
 <x:criterion>random</x:criterion>
 <x:output>*role* ForRoleIsSelected *agent*</x:output>
 <gb:removeOnSuccess>*role* RoleIsPlayedBy *</gb:removeOnSuccess>
</gb:Behavior>

Example of usage: Select a LocateAgent which provides a better value (minimum) according to
formula “Price + ResponseTime*200”.
<gb:Behavior rdf:about="behavior2">
 <gb:class>smartresource.shared.SimpleSelectBehavior</gb:class>
 <gb:trueIf>LocateAgent RoleHasToBe Resolved</gb:trueIf>
 <gb:removeOnStart>LocateAgent RoleHasToBe Resolved</gb:removeOnStart>
 <x:input>*agent* Price *price*</x:input>
 <x:input>*agent* ResponseTime *speed*</x:input>
 <x:criterion>minimum</x:criterion>
 <x:evaluate>*price* *speed* 200 * +</x:evaluate>
 <x:output>LocateAgent ForRoleIsSelected *agent*</x:output>
</gb:Behavior>

Libraries needed: none.

3.2.7 ExcelReaderBehavior

Full name: smartresource.shared.ExcelReaderBehavior

Action: Reads data from a worksheet of a Microsoft Excel file. Takes the first worksheet only.
Considers only columns that have something in the first row and considers that as a label. For
every row from the second on, generates a set of beliefs using those labels as predicates (see
below for details). If I/O exception, ends in failure, otherwise ends in success.

Inputs:

Name Meaning Mandatory Default

x:input Name of Excel file Yes

Outputs: For every row from the second on, generates a row ID based on system time when
process is started and number of the row in the file. Adds following beliefs:

<input> Row <rowID>

<row ID> <label> <value> - for every column that has something (<label>) in the first row,
value is the value of the cell

Example of usage: Read data from file.xls, then do something based on that.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.ExcelReaderBehavior</gb:class>
 <gb:trueIf>I Read Excel</gb:trueIf>
 <gb:removeOnStart>I Read Excel</gb:removeOnStart>
 <x:input>DB/%AgentName%/file.xls</x:input>
</gb:Behavior>

<gb:Behavior rdf:about="behavior2">
...
 <gb:trueIf>DB/%AgentName%/file.xls Row *id*</gb:trueIf>
 <gb:trueIf>*id* Name *name*</gb:trueIf>
 <gb:trueIf>*id* Email *email*</gb:trueIf>
 <gb:trueIf>*id* Saldo *saldo*</gb:trueIf>
...
</gb:Behavior>

Libraries needed: Jakarta POI by Apache (poi.jar). Acquired from http://jakarta.apache.org/poi/.
Provided with the SmartResource platform.

3.3 Inter-agent actions
This section describes behaviors that involve other agents, such as communicative actions.

3.3.1 CreateAgentBehavior

Full name: smartresource.shared.CreateAgentBehavior

Action: Creates a new agent in the same container.

Inputs:

Name Meaning Mandatory Default

x:name The name of the agent. Yes

x:scripts Scripts of the agent. Star(*) separated. Yes

x:roles Roles of the agent. Plus(+) separated. Needed if No

startup.rdf model is used.

Outputs: none.

Example of usage: Start an agent based on beliefs like “operator Is OperatorAgent” and using
“startup.rdf” script enabling accessing actual role scripts from an OntologyAgent.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.CreateAgentBehavior</gb:class>
 <gb:trueIf>*name* Is *roles*</gb:trueIf>
 <gb:removeOnStart>*name* Is *roles*</gb:removeOnStart>
 <x:name>*name*</x:name>
 <x:scripts>DB/startup.rdf</x:scripts>
 <x:roles>*roles*</x:roles>
</gb:Behavior>

Libraries needed: none.

3.3.2 RequestSenderBehavior

Full name: smartresource.shared.RequestSenderBehavior

Action: Sends a message to another agent on the same platform. Always ends in success.

Inputs:

Name Meaning Mandatory Default

x:receiver Name of the agent to send message to. Yes

x:request Content of the message. Yes

x:performative ACL performative, only “request” and
“inform” are used.

No “request”

x:conversationID ID of the converstation. If not given, new is
generated based on current system time.

No

x:parameter Additional parameter for the request to be
included as a user defined parameter
"requestParameter".

No

x:addBeliefs Whether the agent is to have memory of
sending this message.

No “true”

Outputs: If “addBeliefs” is equal to “true”, a request ID is generated based on current system
time and the following beliefs are added:

<request ID> conversationID <conversationID>

<request ID> performative <performative>

<request ID> receiver <receiver>

<request ID> request <request>

<request ID> parameter <parameter>

Example of usage: Request data in KML format from a selected NetworkAgent by sending
request “GetData” with parameter “kml”.
<gb:Behavior rdf:about="behavior1.2">
 <gb:class>smartresource.shared.RequestSenderBehavior</gb:class>
 <gb:trueIf>I Request NetDataKML</gb:trueIf>
 <gb:trueIfGoalAchieved>NetworkAgent Is *name*</gb:trueIfGoalAchieved>
 <gb:removeOnStart>I Request NetDataKML</gb:removeOnStart>
 <x:receiver>*name*</x:receiver>
 <x:request>GetData</x:request>
 <x:parameter>kml</x:parameter>
 <gb:addOnSuccess>I Receive NetData</gb:addOnSuccess>
</gb:Behavior>

Libraries needed: none.

3.3.3 RequestReceiverBehavior

Full name: smartresource.shared.RequestReceiverBehavior

Action: Listens for incoming messages matching defined parameters (or all messages if none
given). If neither “waitOnlyFirst” nor “maxWait” is given, does this forever. Upon receiving a
matching message, generates beliefs about this (only if “addBeliefs” is equal to “true”) and
imitates ending in success (performs addOnSuccess, etc.). If “maxWait” is given, when the
specified period expires, ends in failure.

Inputs:

Name Meaning Mandatory Default

x:matchRequest Match the content of the message. No

x:matchConversationID Match conversation ID. No

x:matchPerformative Match ACL performative, only “request” and
“inform” are used.

No

x:waitOnlyFirst Whether to end when the first message is
received.

No “false”

x:maxWait Time in milliseconds after which receiver
ends (never ends, if not given).

No

x:addBeliefs Whether the agent is to have memory of
receiving requests.

No “true”

Outputs: Prints to the screen “"<request> <parameter>" from <sender> received”. If
“addBeliefs” is equal to “true”, a request ID is generated based on current time and the following
beliefs are added (objects come from the message):

<request ID> conversationID <conversationID>

<request ID> performative <performative>

<request ID> sender <sender>

<request ID> request <content>

<request ID> parameter <parameter>

Example of usage: Receive “GetData” requests for 1 minute. Upon every received request, do
not add detailed beliefs but add belief “I Received Something”. After 1 minute, end and add
belief “I Ended Receiving”.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.RequestReceiverBehavior</gb:class>
 <gb:trueIf>I Start RequestReceiver</gb:trueIf>
 <gb:removeOnStart>I Start RequestReceiver</gb:removeOnStart>
 <x:matchRequest>GetData</x:matchRequest>
 <x:matchPerformative>request</x:matchPerformative>
 <x:addBeliefs>false</x:addBeliefs>
 <x:maxWait>60000</x:maxWait>
 <gb:addOnSuccess>I Received Something</gb:addOnSuccess>
 <gb:addOnFail>I Ended Receiving</gb:addOnFail>
</gb:Behavior>

Libraries needed: none.

3.3.4 ResponseReceiverBehavior

Full name: smartresource.shared.ResponseReceiverBehavior

Action: Listens for a response to a request sent earlier. When received, adds belief, for which the
template is specified in “saveTo”, filling all the undefined (“?”) parts (subject, predicate, object)
of the template with the content of the received message, and ends in success. If “maxWait” is
given, if response is not received within specified time, ends in failure.

Inputs:

Name Meaning Mandatory Default

x:conversationID ID of the conversation to match (usually
generated by a RequestSenderBehavior).

Yes

x:saveTo Template of belief to add. Yes

x:maxWait Time in milliseconds to wait (wait forever, if not
given).

No

x:addBeliefs Whether the agent is to have memory of
receiving the response.

No “false”

Outputs: Print to the screen “"<message>" from <sender> received”. Adds belief, for which the
template is specified in “saveTo”, filling all the undefined parts with the content of the message
(see example). ”. If “addBeliefs” is equal to “true”, a request ID is generated based on current
time and the following beliefs are added (objects come from the message):

<request ID> conversationID <conversationID>

<request ID> sender <sender>

<request ID> inform<request>

Example of usage: Assuming that a request with parameter “Price” was earlier sent to agent
“loc_service”, wait maximum 5 seconds for a response. Assuming that the response is “10”, add
belief “loc_service Price 10”.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.shared.ResponseReceiverBehavior</gb:class>
 <gb:trueIf>*name* IsAsked *param*</gb:trueIf>
 <gb:trueIf>*requestID* receiver *name*</gb:trueIf>
 <gb:trueIf>*requestID* parameter *param*</gb:trueIf>
 <gb:trueIf>*requestID* conversationID *convID*</gb:trueIf>
 <gb:falseIf>*name* Sends *param*</gb:falseIf>
 <gb:removeOnStart>*name* IsAsked *param*</gb:removeOnStart>
 <gb:addOnStart>*name* Sends *param*</gb:addOnStart>
 <x:conversationID>*convID*</x:conversationID>
 <x:saveTo>*name* *param* ?</x:saveTo>
 <x:maxWait>5000</x:maxWait>
 <gb:removeOnEnd>*requestID* * *</gb:removeOnEnd>
 <gb:removeOnEnd>*name* Sends *param*</gb:removeOnEnd>
</gb:Behavior>

Libraries needed: none.

3.3.5 DataSenderBehavior

Full name: smartresource.shared.DataSenderBehavior

Action: Sends to another agent on the same platform a message containing data from a file. This
is usually done in response to a request. Puts the extension of the file into the “ontology” field of
ACL message. Able of sending both textual and binary (.class and .zip) files. If there is I/O
exception, ends in failure. Otherwise, ends in success.

Inputs:

Name Meaning Mandatory Default

x:receiver Name of an agent to send message to. Yes

x:loadFrom File from where the data is to be loaded. Yes

x:conversationID ID of the converstation. If not given, new is
generated based on current system time.

No

x:addBeliefs Whether the agent is to have memory of sending
this message.

No “false”

Outputs: If “addBeliefs” is equal to “true”, a request ID is generated based on current system
time and the following beliefs are added:

<request ID> conversationID <conversationID>

<request ID> receiver <receiver>

<request ID> inform <loadFrom>

<request ID> ontology <extension of loadFrom>

Example of usage: Assuming there was a request, send data.kml in response.
<gb:Behavior rdf:about="behavior2">
 <gb:class>smartresource.shared.DataSenderBehavior</gb:class>
 <gb:trueIf>*requestID* sender *requestor*</gb:trueIf>
 <gb:trueIf>*requestID* conversationID *convID*</gb:trueIf>
 <gb:falseIf>I Respond *requestID*</gb:falseIf>
 <gb:addOnStart>I Respond *requestID*</gb:addOnStart>
 <x:receiver>*requestor*</x:receiver>
 <x:conversationID>*convID*</x:conversationID>
 <x:loadFrom>DB/%AgentName%/data.kml</x:loadFrom>
 <gb:removeOnSuccess>* * *requestID*</gb:removeOnSuccess>
 <gb:removeOnSuccess>*requestID* * *</gb:removeOnSuccess>
</gb:Behavior>

Libraries needed: none.

3.3.6 DataReceiverBehavior

Full name: smartresource.shared.DataReceiverBehavior

Action: Listens for a response to a request sent earlier, which is to be data of a known type.
When received, saves the content of received message to a file, and ends in success. If
“maxWait” is given, if response is not received within specified time, ends in failure.

Inputs:

Name Meaning Mandatory Default

x:conversationID ID of the conversation to match (usually
generated by a RequestSenderBehavior).

Yes

x:saveTo File to save data to. Yes

x:datatype List of accepted datatypes, separated by
whitespaces.

Yes

x:maxWait Time in milliseconds to wait (wait forever, if not
given).

No

x:addBeliefs Whether the agent is to have memory of
receiving the response.

No “false”

Outputs: Prints to the screen “<datatype> from <sender> received”. Writes data to the file: If
filename does not have extension, the received one (“ontology” field) is added. If “addBeliefs” is
equal to “true”, a request ID is generated based on current time and the following beliefs are
added (objects except “saveTo” come from the message):

<request ID> conversationID <conversationID>

<request ID> sender <sender>

<request ID> inform <saveTo>

<request ID> ontology <ontology>

Example of usage: Assuming a request for data was earlier sent (as in the example to
RequestSenderBehavior), wait for response.
<gb:Behavior rdf:about="behavior1.3">
 <gb:class>smartresource.shared.DataReceiverBehavior</gb:class>
 <gb:trueIf>I Receive NetData</gb:trueIf>
 <gb:trueIf>NetworkAgent ForRoleIsSelected *name*</gb:trueIf>
 <gb:trueIf>*requestID* receiver *name*</gb:trueIf>
 <gb:trueIf>*requestID* conversationID *convID*</gb:trueIf>
 <gb:trueIf>*requestID* parameter *datatype*</gb:trueIf>
 <gb:removeOnStart>I Receive NetData</gb:removeOnStart>
 <x:conversationID>*convID*</x:conversationID>
 <x:saveTo>DB/%AgentName%/received/network.*datatype*</x:saveTo>
 <x:datatype>.*datatype*</x:datatype>
 <gb:removeOnSuccess>*requestID* * *</gb:removeOnSuccess>
 <gb:addOnSuccess>I Have NetData</gb:addOnSuccess>
</gb:Behavior>

Libraries needed: none.

3.3.7 SecurityCheckBehavior

Full name: smartresource.shared.SecurityCheckBehavior

Action: Checks with Directory Facilitator whether the agent in question plays a role that would
authorize it for something. Ends in success if authorization is granted, ends in failure otherwise.
If no authorized roles are given, nobody passes.

Inputs:

Name Meaning Mandatory Default

x:agent Name of the agent. Yes

x:authorized (>1 is
allowed)

Authorized roles. No

Outputs: Prints to the screen “<agent> is authorized as an <role>” or “<agent> has not been
authorized”.

Example of usage: Assuming the agent received a request to start a new role, perform check
whether the requestor is an OperatorAgent, and, if so, add belief “I MissingScript *role*” to start
the procedure of requesting and loading the needed script.
<gb:Behavior rdf:about="behavior2.3">
 <gb:class>smartresource.shared.SecurityCheckBehavior</gb:class>
 <gb:trueIf>*requestID* request LoadRole</gb:trueIf>
 <gb:trueIf>*requestID* parameter *role*</gb:trueIf>
 <gb:trueIf>*requestID* sender *sender*</gb:trueIf>

 <gb:falseIf>I Handle *requestID*</gb:falseIf>
 <gb:addOnStart>I Handle *requestID*</gb:addOnStart>
 <x:agent>*sender*</x:agent>
 <x:authorized>OperatorAgent</x:authorized>
 <gb:addOnSuccess>I MissingScript *role*</gb:addOnSuccess>
 <gb:removeOnEnd>* * *requestID*</gb:removeOnEnd>
 <gb:removeOnEnd>*requestID* * *</gb:removeOnEnd>
</gb:Behavior>

Libraries needed: none.

3.4 Core actions
This section describes behaviors which do not normally need to be used directly, because rules
that trigger them are provided in the startup.rdf script. Instead of using directly, a certain beliefs
or goals are to be used to initiate needed actions.

3.4.1 DFLookupBehavior

Full name: smartresource.core.behaviors.DFLookupBehavior

Action: Finds with the Directory Facilitator names of agents playing a particular role. Ends in
failure only if an exception occurs, otherwise ends in success regardless of the search result.

Inputs:

Name Meaning Mandatory Default

x:search Role to search for. Yes

x:addIfNone Belief to add if no agent is found. No

x:addIfOne Belief to add if exactly one is found. The name
of the agent is put into the object of the
statement.

Yes

x:storeIfSeveral Beliefs to add if several are found (one per
agent). The names of the agents are put into the
objects of the statements.

Yes

x:addIfSeveral (>1 is
allowed)

Additional beliefs to add if several are found (to
trigger resolving actions).

No

Outputs: In case when no agent is found, prints to the screen “<search> is not found in DF”.

Example of usage: As in startup.rdf.
<gb:Behavior rdf:about="behaviorDF">
 <gb:class>smartresource.core.behaviors.DFLookupBehavior</gb:class>
 <gb:achievesGoal>*role* ForRoleIsSelected *</gb:achievesGoal>
 <x:search>*role*</x:search>
 <x:addIfNone>*role* RoleIsPlayedBy Noone</x:addIfNone>
 <x:addIfOne>*role* ForRoleIsSelected ?</x:addIfOne>
 <x:addIfSeveral>*role* RoleHasToBe Resolved</x:addIfSeveral>
 <x:storeIfSeveral>*role* RoleIsPlayedBy ?</x:storeIfSeveral>

</gb:Behavior>

Example of usage: To trigger this behavior, given that startup.rdf is loaded.
<gb:Behavior rdf:about="behavior1">
...
 <gb:trueIfGoalAchieved>OperatorAgent ForRoleIsSelected *name*</gb:trueI
fGoalAchieved>
...
</gb:Behavior>

Libraries needed: none.

3.4.2 AssignRoleBehavior

Full name: smartresource.core.AssignRoleBehavior

Action: Parses a script and registers the new role with Directory Facilitator. Ends in failure if an
exception occurs.

Inputs:

Name Meaning Mandatory Default

x:input Name of script file. Yes

x:startup Whether this is startup, not really a role (not to
register with DF).

No “false”

x:emptyBeliefs Whether to remove all the old beliefs. No “false”

x:emptyGoals Whether to remove all the old goals. No “false”

x:emptyRules Whether to remove all the old behavioral rules. No “false”

Outputs: Prints to the screen “<input> role is assigned”.

Example of usage: As in startup.rdf.
<gb:Behavior rdf:about="behavior1">
 <gb:class>smartresource.core.AssignRoleBehavior</gb:class>
 <gb:trueIf>I MissingScript *role_script*</gb:trueIf>
 <gb:trueIf>*requestID* parameter *role_script*</gb:trueIf>
 <gb:trueIf>I Received *role_script*</gb:trueIf>
 <gb:falseIf>I Parse *role_script*</gb:falseIf>
 <gb:addOnStart>I Parse *role_script*</gb:addOnStart>
 <x:input>DB/%AgentName%/received/*role_script*.rdf</x:input>
 <x:emptyBeliefs>false</x:emptyBeliefs>
 <x:emptyGoals>false</x:emptyGoals>
 <x:emptyRules>false</x:emptyRules>
 <gb:removeOnSuccess>I * *role_script*</gb:removeOnSuccess>
 <gb:removeOnSuccess>*requestID* * *</gb:removeOnSuccess>
 <gb:addOnSuccess>I PlayRole *role_script*</gb:addOnSuccess>
</gb:Behavior>

Example of usage: To trigger the process of requesting the script and assigning the role, given
that startup.rdf is loaded.

<gb:Behavior rdf:about="behavior1">
...
 <gb:addOnSuccess>I MissingScript *role*</gb:addOnSuccess>
...
</gb:Behavior>

Libraries needed: none.

3.5 Graphical User Interfaces (GUI)
This section describes simple reusable GUIs.

3.5.1 SeveralButtonsGUI

Full name: smartresource.shared.gui.SeveralButtonsGUI

Action: Gives a very simple interface with N buttons and possibility to enable and disable those
buttons. When the user clicks on a button, a predefined event “User ClickedButton <n>” is
generated, where <n> is the consecutive number of the button {1..N}.

Inputs for construct:

Name Meaning Mandatory Default

x:button (>1 is
allowed)

Create a button with given text. No

x:title The title of the window. No “”

x:state The state to start in: “normal” or “minimized”. No “normal”

The inputs x:title and x:state are actually handled in the super-class SmartResourceAgentGUI,
and therefore apply to any GUI.

Inputs for modify:

Name Meaning Mandatory Default

x:modify Action: “Disable” or “Enable” Yes

x:target The consecutive number {1..N}of a button to
disable or enable.

Yes

Outputs: Generates “User ClickedButton <n>” events.

Example of usage: Create GUI with 3 buttons. Disable the button that was clicked.
<gb:Behavior rdf:about="start_gui">
 <gb:class>smartresource.shared.gui.SeveralButtonsGUI</gb:class>
 <gb:trueIf>I Start GUI</gb:trueIf>
 <gb:removeOnStart>I Start GUI</gb:removeOnStart>
 <x:title>Example</x:title>
 <x:button>Click me</x:button>

 <x:button>Click me too</x:button>
 <x:button>Click also me</x:button>
 <x:state>minimized</x:state>
</gb:Behavior>

<gb:Behavior rdf:about="gui_event1">
 <gb:class>@ModifyGUI</gb:class>
 <gb:event>User ClickedButton *x*</gb:event>
 <x:modify>Disable</x:modify>
 <x:target>*x*</x:target>
</gb:Behavior>

Libraries needed: none.

4 Application Programming Interfaces

This chapter provides details of Java classes needed when developing Reusable Atomic
Behaviors or other assets to be used by a SmartResource Agent.

4.1 Reusable Atomic Behavior (RAB)

Full name: smartresource.core.ReusableAtomicBehavior

Extends: jade.core.behaviours.SimpleBehaviour

In order to create a new RAB, the programmer needs to make a class that extends
ReusableAtomicBehavior, and to implement its action() method. No constructor is needed; if
required, initializing actions are done in onStart().

JADE methods to be implemented in subclasses:

 Name Meaning Mandatory

public void action() Body of the behavior. Called at least once when the
behavior is executed, and after that repeatedly while
finished = false.

Yes

public void onStart() Method for initializing behavior. Called only once:
when the behavior is executed, before calling action().

No

JADE methods already implemented:

 Name Meaning

public void done() Used by JADE to check after every execution of action() whether
the behavior has ended. Just returns the value of finished.

public int onEnd() Called once when the behavior is ended, before removing it.
Performs operations addOnSuccess and removeOnSuccess (if
success = true), addOnFail and removeOnFail (if success = false),
addOnEnd and removeOnEnd (in any case), and also calls
wakeAgent(). If needs to be overridden in subclasses, we
recommend calling super.onEnd() so these actions are still
performed.

Public Fields:

 Name Meaning Default

public finished Whether the behavior has ended. This field is checked true

boolean after every execution of action(). Default value is true.
So, by default, a RAB is a one-shot-behavior. Needs to
be set to false in order to create cyclic, waiting, etc.
behaviors.

public
boolean

success Whether the behavior has ended in success or failure.
Used inside onEnd() to lead the actions.

true

Public API methods provided:

 Name Meaning

public
String

getParameterValue (String
name, String ns)

Get the value of the first found start parameter with
specified name and namespace.

public
String

getParameterValue (String
name)

The same as above, only namespace is not taken into
account.

public
Vector

getParameterValues
(String name, String ns)

Get the values (Vector of Strings) for all found start
parameters with specified name and namespace.

public
Vector

getParameterValues
(String name)

The same as above, only namespace is not taken into
account.

public void print (String text) Prints to the screen (and to the log) specified text.
Text is printed preceded by “[<current time>]
<agent’s name>: “

public void wakeAgent() Informs the agent that it must wake up its Live
behavior to check whether new rules became
applicable.

public void addBelief
(SemanticStatement belief)

Adds specified belief to agent’s beliefs. Must not
contain “*”.

public void removeBelief
(SemanticStatement belief)

Removes specified belief from agent’s beliefs. If the
specified belief contains “*” and matches several
existing beliefs, all matching beliefs will be removed.

public
Boolean

hasBelief
(SemanticStatement belief)

Checks whether agent’s beliefs include the specified
belief, which can have “*”.

Public
Vector

getBeliefs
(SemanticStatement
template)

Returns all the beliefs (Vector of
SemanticStatements) matching the specified
template.

Relevant API methods and fields inherited from JADE’s SimpleBehaviour (consult JADE
documentation for more details):

 Name Meaning

public void block() Block behavior (do not call) until a new message
arrives.

public void block(long millis) Block behavior until a new message arrives or until
specified time (in milliseconds) elapses.

public
boolean

isRunnable() Returns false if behavior is blocked and true if not.

protected
Agent

myAgent Reference to the agent owning this behavior. Enables
behaviors to call public methods of jade.core.Agent
such as send(), receive(), doMove() and other. After
the type casting ((SmartResourceAgent)myAgent),
enables access to public methods of
SmartResourceAgent.

Example of usage: A trimmed down version of ResponseReceiverBehavior
package smartresource.shared;
import smartresource.core.*;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class ResponseReceiverBehavior extends ReusableAtomicBehavior{

 String convID="";
 String saveTo="";

 public void onStart(){
 convID=getParameterValue("conversationID");
 saveTo=getParameterValue("saveTo");
 }

 public void action() {
 finished=false;
 ACLMessage msg = myAgent.receive(MessageTemplate.

MatchConversationId(convID));

 if (msg!=null){
 String message=msg.getContent();
 print("\""+message+"\" from "+msg.getSender().

getLocalName()+" received");
 SemanticStatement ss_output=new SemanticStatement(saveTo);
 if(ss_output.isSubjectUndefined()) ss_output.subject=message;
 if(ss_output.isPredicateUndefined()) ss_output.predicate=message;
 if(ss_output.isObjectUndefined()) ss_output.object=message;
 addBelief(ss_output);
 finished=true;
 }
 else block();
 }
}

4.2 Semantic Statement

Full name: smartresource.core.SemanticStatement

Extends: nothing.

Implementing RABs, the programmer will often need to work with instances of this class. It is
because an agent’s beliefs set is basically a Vector of Semantic Statements and therefore
ReusableAtomicBehavior’s methods hasBelief(), getBeliefs(), addBelief() and removeBelief()
operate on them.

Public Fields:

 Name Meaning Default

public
String

subject The subject of the statement. “?”

public
String

predicate The predicate of the statement. “?”

public
String

object The object of the statement. “?”

For all three components, “?” has the meaning of “not defined”, “*” has the meaning of
“anything”, and “*<var>*” refers to a variable.

Constructors:

Name Meaning

SemanticStatement
(String s, String p,
String o)

Semantic Statement is created and initialized with given subject,
predicate and object. Leading and trailing whitespaces in all three
elements are trimmed off. If any of the elements is given null, it is set to
“?”.

SemanticStatement
(String str)

Semantic Statement is created and initialized from a String of the format
(whitespace-separated) “<subject> <predicate> <object>”. If only one
whitespace is found, the object is set to “?”. If no whitespace is found,
both predicate and object are set to “?”.

SemanticStatement
(Object toCopy)

Semantic Statement is created and initialized as a copy of the Semantic
Statement passed as the parameter.

Public API methods provided:

 Name Meaning

public
boolean

isFullyDefined() Returns false if either subject, predicate or object is
undefined (i.e. is “?”), and returns true otherwise.

public
boolean

isSubjectUndefined() Returns true is the subject is undefined.

public
boolean

isPredicateUndefined() Returns true is the predicate is undefined.

public isObjectUndefined() Returns true is the object is undefined.

boolean

public
boolean

isSubjectAny() Returns true if the subject is “anything” (i.e. starts
with “*”)

public
boolean

isPredicateAny() Returns true if the predicate is “anything” (i.e. starts
with “*”)

public
boolean

isObjectAny() Returns true if the object is “anything” (i.e. starts
with “*”)

public
boolean

hasVariables() Returns false if either subject, predicate or object is
a variable, i.e. of the form *x*.

public
String

getSubjectVariableName() Returns the name of the variable in the subject (“x”
if it is *x*) or null if it is not a variable.

public
String

getPredicateVariableName() Returns the name of the variable in the predicate
(“x” if it is *x*) or null if it is not a variable.

public
String

getObjectVariableName() Returns the name of the variable in the object (“x” if
it is *x*) or null if it is not a variable.

public
boolean

equals(Object obj) Returns true if this statement is equal to the one
given as the parameter, taking “*” into account.

public
boolean

bindVars(HashMap vars) Substitutes variables with their values given in the
HashMap <String var, String value>.

public
String

toString() Creates string representation of the statement
“<subject> <predicate> <object>”.

Example of usage: See the example in the section on Reusable Atomic Behavior. The input
parameter saveTo can, for instance, be “Agent1 HasPrice ?”.

4.3 Variables Binding Manager

Full name: smartresource.core.VariablesBindingManager

Extends: nothing.

This class was created in order to handle variables in the behavior rules. However, it can also be
utilized by the programmer when implementing a RAB that needs some kind of rule-based logic
itself. An example is SimpleSelectBehavior (see corresponding section).

Public API methods provided:

 Name Meaning

public VariablesBindingManager() Constructor

public
boolean

evaluate(SemanticStatement
stat, Vector vect, int mode)

Evaluates a Semantic Statement against a Vector of
Statements (e.g. agent’s beliefs) and a current set of
matching bindings of variables (stored locally). Also
prepares an updated set of bindings (but does not adopt
it yet). If the parameter “mode” is
VariablesBindingManager.TRUE_IF, the updated set
of bindings contains the bindings according to which
stat belongs to vect, and the method returns true if there
is at least one such binding. If the parameter “mode” is
VariablesBindingManager.FALSE_IF, the updated set
of bindings contains the bindings according to which
stat does not belong to vect, and the method returns true
if this set is empty.

public
void

emptyNewBindings() Empties the updated set of bindings created in the
course of previous evaluate() operation(s).

public
void

adoptNewBindings() Adopts the updated set of bindings as the current set
and performs emptyNewBindings.

public int getNumberOfBindings() Returns the number of bindings in the current set.

public
HashMap

getBinding(int index) Returns HashMap <String var, String value>
representing the binding at position index in the current
set of bindings. If index is larger that the number of
bindings, returns an empty HashMap.

Example of usage: Some relevant pieces of code from SimpleSelectBehavior
import java.util.*;
...

Vector inputs=getParameterValues("input");
String output=getParameterValue("output");

VariablesBindingManager manager=new VariablesBindingManager();
for(int i=0;i<inputs.size();i++){
 SemanticStatementst=new SemanticStatement((String)inputs.elementAt(i));
 boolean found=manager.evaluate(st, ((SmartResourceAgent)myAgent).beliefs,

 VariablesBindingManager.TRUE_IF);
 if(found){
 manager.adoptNewBindings();
 }
 else{
 success=false;
 return;
 }
}

...
/*selection process*/
...

vars=manager.getBinding(best);
Iterator itvars=vars.entrySet().iterator();
while(itvars.hasNext()){
 Map.Entry ent=(Map.Entry)itvars.next();

 String regex="*"+(String)ent.getKey()+"*";
 output=output.replaceAll(regex,(String)ent.getValue());
}
SemanticStatement ss_output=new SemanticStatement(output);
addBelief(ss_output);

4.4 Interface Event Handler

Full name: smartresource.core.InterfaceEventHandler

Extends: smartresource.core.ReusableAtomicBehavior

In some cases, an agent has to be able to react to some events in synchronous way, i.e. to provide
some response immediately to the same channel, through which the request arrived. A common
case is when an agent starts an instance of smartresource.core.SmartResourceAgentServer to be
able to communicate with external applications which can issue HTTP requests, e.g.
GoogleEarth.

In such a case, the programmer needs to make a class that extends InterfaceEventHandler, and to
implement its handle() method. onStart() can be implemented although it is hardly sensible,
action() is not used. onEnd() is called as well, so using the success field is possible to lead the
selection between add(remove)OnSuccess and add(remove)OnFail.

Methods to be implemented in subclasses:

 Name Meaning Mandatory

public
String

handle(String
event)

Body of the handler. The return String of the method
will be sent to the requestor without modifications.

Yes

Public API methods are as in ReusableAtomicBehavior (see corresponding section).

Example of usage:
public class ExpertAgentHandler extends InterfaceEventHandler
{
 public String handle(String event){
 String message="";
 if(event.startsWith("Get Network")){
 message="some xml";
 }
 else ...

 String response="HTTP/1.0 200 OK \r\nContent-Type:
text/xml\r\n\r\n";
 response=response+message;

 return response;
}

}

4.5 SmartResource Agent GUI

Full name: smartresource.core.SmartResourceAgentGUI

Extends: javax.swing.JFrame

If there is a need to give agent a new window-based GUI, the programmer needs to make a class
that extends SmartResourceAgentGUI, to implement its construct() method, an action listener,
and modify() method (if GUI needs to react agent’s command).

Methods to be implemented in subclasses:

 Name Meaning Mandatory

public void construct() To initialize the GUI: create the elements, set size,
create and assign the action listener.

Yes

public void modify() To perform some actions upon agent’ request, mainly
related to modifying GUI (enabling/disabling elements,
putting text to labels, etc.). From the script, called
when “@ModifyGUI” is given as the behavior class.

No

Before calling construct() or modify(), the agent will set the start parameters provided in the
corresponding behavior rule. The access to those parameters is possible using the same methods
as those in ReusableAtomicBehavior, i.e. getParameterValue (String name, String ns),
getParameterValue (String name), getParameterValues (String name, String ns),
getParameterValues (String name).

Note that there are two inputs for construct() that are handled in the implementation of
SmartResourceAgentGUI, and therefore automatically apply to any subclass. This is done inside
method public void start(), which is called after construct(), processes these two inputs and
makes the window visible. If there is a need to overrule this functionality, the subclass needs to
override start().

Name Meaning Mandatory Default

x:title The title of the window. No “”

x:state The state to start in: “normal” or “minimized”. No “normal”

The action listener must create a GuiEvent, add a single parameter defining the event, and post it
through myAgent.postGuiEvent (see example).

Example of usage: Implementation of SeveralButtonsGUI (see corresponding section)
package smartresource.shared.gui;
import smartresource.core.*;
import javax.swing.*;
import java.awt.*;
import java.util.Vector;
import java.util.Iterator;

import jade.gui.GuiEvent;

public class SeveralButtonsGUI extends SmartResourceAgentGUI
{
 Vector buttons;

 public void construct(){
 Container pane=getContentPane();
 setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
 pane.add(Box.createRigidArea(new Dimension(0,10)));
 ActList aActList = new ActList();

 buttons=new Vector();
 Vector b=getParameterValues("button");
 Iterator it=b.iterator();
 while(it.hasNext()){
 String text=(String)it.next();
 JButton button=new JButton(text);
 buttons.add(button);
 pane.add(button);
 pane.add(Box.createRigidArea(new Dimension(0,10)));
 button.addActionListener(aActList);
 }
 pack();
 setSize((int)getSize().getWidth()+20,(int)getSize().getHeight());
 }

 public void modify(){
 String event=getParameterValue("modify");
 String target=getParameterValue("target");
 int button=new Integer(target).intValue();

 if(event.equals("Enable")){
 ((JButton)buttons.elementAt(button-1)).setEnabled(true);
 }
 else if(event.equals("Disable")){
 ((JButton)buttons.elementAt(button-1)).setEnabled(false);
 }
 }

 class ActList implements java.awt.event.ActionListener
 {
 public void actionPerformed(java.awt.event.ActionEvent event)
 {
 Object object = event.getSource();
 int button=buttons.indexOf(object)+1;
 GuiEvent ev = new GuiEvent(this, 0);
 ev.addParameter("User ClickedButton "+button);
 myAgent.postGuiEvent(ev);
 }
 }

}

4.6 Working with HTTP

The SmartResource Platform provides the class smartresource.core.SmartResourceAgentServer.
An agent can start an instance of this class to be able to communicate with external applications
which can issue HTTP requests, e.g. GoogleEarth. Upon receiving an HTTP request,

SmartResource Agent Server creates a ServerEvent (encapsulating a request String and a Socket
through which the response should be sent) and posts it to the agent using
myAgent.postServerEvent:
myAgent.postServerEvent(new ServerEvent(request,socket))

The method postServerEvent will put the event to the queue, so that the agent can pick it up and
process in its own thread, rather than in the thread of the server. If, for some reason, there will be
a need to extend the implementation of SmartResourceAgentServer, the same procedure should
be followed.

In some cases, it may be needed to do it another way around, i.e. to start an agent under an HTTP
server rather than start an HTTP server under an agent. Such a need can appear when attempting
to integrate the agent system with an existing enterprise system. Starting a new container which
will connect to the platform running on localhost:80, and an agent in this new container, can be
done from any Java application using a code like follows:
jade.core.Runtime r=jade.core.Runtime.instance();
jade.core.ProfileImpl pi=new jade.core.ProfileImpl(false);
pi.setParameter(jade.core.ProfileImpl.MAIN_HOST,"localhost");
pi.setParameter(jade.core.ProfileImpl.MAIN_PORT,"80");
jade.wrapper.AgentContainer ac=r.createAgentContainer(pi);
SmartResourceAgent myAgent=new SmartResourceAgent();
Object[] params=new Object[2];
params[0]="DB/startup.rdf";
params[1]=role;
myAgent.setArguments(params);
jade.wrapper.AgentController actl=ac.acceptNewAgent(name, myAgent);
actl.start();

In such a case, using the normal procedure (myAgent.postServerEvent) is still preferable if
possible. However, more likely, processing the request in the server queue will be unavoidable.
For such cases, the following method is provided by SmartResourceAgent:

public String processServerMessage(String message)

To avoid harmful interactions (processing happen in parallel with the normal cycle of the agent),
the method suspends the agent (the normal thread) for the time of processing the event and
resumes afterwards. Otherwise, the processing routine is exactly the same.

