

pp

“Framework for Semantic Adaptation of
Maintenance Resources”

SmartResource Tekes Project
 Deliverable D 1.2

General Adaptation Framework

(GAF)

University of Jyväskylä

Agora Center

Industrial Ontologies Group

Agora Center, University of Jyväskylä

July – October, 2004

 Jyväskylä, Finland

INDUSTRIAL ONTOLOGIES GROUP

IOG

GENERAL ADAPTATION FRAMEWORK (PART I)

Technical report

SmartResource: Proactive self-maintained resources in Semantic Web

2/24/2005

University of Jyväskylä

Agora Center

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi

Title: General Adaptation Framework

Work: Technical report

Status of document: working draft

Number of Pages: 45

Keywords: General adaptation framework, Semantic Web, Agent, Device, Human,

Expert, Software Interface, Industrial Maintenance, Global Understanding Environment

Abstract: This document represents conceptual, operational and architectural

characteristics of software components and their cooperation using family of UML

diagrams. Report covers technical aspects of General Adaptation Framework and is

dedicated to describe domain in semi formal way to allow unified understanding of all

concepts related to adaptation. This report is a starting point of software development

process and captures design features.

 I

Abbreviations

OWL – Web Ontology Language

RDF – Resource Description Framework

RDFS – RDF Schema language

XML – eXtensible Markup Language

 II

Contents

1 INTRODUCTION ...5
1.1 TASKS AND GOALS ...5
1.2 BACKGROUND...6

1.2.1 Framework for semantic adaptation of resources ..6

1.2.2 Data integration..6

1.2.3 Software integration...7

2 DESCRIPTION OF CONCEPTS ..8
2.1 SMARTRESOURCE ...8
2.2 REAL WORLD RESOURCE..8
2.3 WEB SERVICE ...8
2.4 HUMAN...9
2.5 ADAPTER ..9
2.6 AGENT ..9
2.7 GLOBAL UNDERSTANDING ENVIRONMENT...9
2.8 ADAPTATION ..9
2.9 GENERAL ADAPTATION ..9
2.10 PLACE OF SMARTRESOURCE...10
2.11 RDF..10
2.12 RSCDF..10
2.13 ONTOLOGY ...11
2.14 GUN ADAPTER...11

3 ONTOLOGY DESIGN..13

4 SCENARIOS OF INTERACTION..16
4.1 SMARTRESOURCE INTERNAL SCENARIOS ..17

4.1.1 Agent to RWR ...18

4.1.2 RWR to Agent ...21

4.1.3 SmartResource internal interoperation ..26

5 ADAPTER SOFTWARE COMPONENT DESIGN FOR SEMANTIC
ADAPTATION...27

5.1 ADAPTER – ABSTRACT REALIZATION ..27
5.1.1 Adapter Class Diagram..27

5.1.2 Adapter creation...28

5.1.3 Protocol Class Diagram ...29

5.1.4 Agent to RWR communication..30

5.1.5 Abstract view on semantic adaptation process ..31

 III

5.2 ADAPTER WITH CONCRETE REALIZATION..32
5.2.1 Concrete Adapter Class Diagram ..32

5.2.2 Concrete Adapter creation ...33

5.2.3 Concrete Protocol Class Diagram..33

5.2.4 Agent to Rwr communication with concrete realization34

5.2.5 Semantic adaptation with concrete realization ..34

5.2.6 Partitioned logic of semantic adaptation..35

5.2.7 Run-time concrete realization loading...38

6 ADAPTATION OF HUMAN, DEVICE AND WEB SERVICE USING GAF....40
6.1 HUMAN ADAPTATION..40
6.2 DEVICE ADAPTATION ..40
6.3 WEB SERVICE ADAPTATION ..40

6.3.1 W3C stack..40

REFERENCES...43

 IV

1 Introduction
Rapid development of new technologies and implementation of new innovations bring to

industry new possibilities for conducting its business. Recently on-research stage

technologies are available for implementation already. Wide data range wireless transition,

increasing computation power and decrease the price of components are result of recent

science achievements.

However today’s state of affairs show us improvements of data processing and acquisition

from one hand, from another hand it’s still difficult to process data by intelligent software

that allows integration of heterogeneous systems.

Data, represented in systems is in its own format, has no semantic description, often non-

interoperable.

The main objective of general adaptation framework is to design generic approach for

building resource adapters and development of appropriate ontologies for semantic

adaptation.

Taking into account wide variety of possible resource types, data formats and ways of

accessing and acquisition, adaptation of such resources in unified resource management

environment is important development challenge.

1.1 Tasks and Goals

Tasks of stage:

• Development of general framework for semantic adaptation of resources.

• Development and implementation of semantic adapter for real world resource.

Goals of stage:

• To study approaches for semantic adaptation of resources; design generic software

components for adaptation of different real world resources.

University of Jyväskylä

Agora Center

• Design, development and implementation of a prototype of ontology-based device

adapter

1.2 Background

1.2.1 Framework for semantic adaptation of resources

There is a variety of resources intended for integration into maintenance environment.

Originally, as it thought, all resources were divided into three base classes: devices,

services and humans. These resources represent real world objects, which should interact

in some way. The adaptation of such resources in common sense lies in providing an

environment for heterogeneous resources which would allow them to communicate in a

unified way via standard protocol.

Originally the task of adaptation is extremely difficult and leads to the big challenge. There

is a variety of organizations and projects working in field of application and data

integration.

Basically we can consider adaptation from two sides: adaptation of heterogeneous

applications and adaptation of heterogeneous data which is in different formats. Both types

of integrations are intended to be implemented in prototype of general adaptation

framework.

1.2.2 Data integration

Let’s suppose the tracing of data such as data lineage, mappings, and transformations. The

picture bellow depicts different types of data which need to be integrated such as flat files,

XML-based data, data from specific applications in specific format.

 6

The integration process may include the following key functions:

- Extracting, transformation and loading – for building data warehouse or operation

data stores and giving end-user/sources/applications possibility to proceed

integrated data

- Data replication, to allow multiple heterogeneous servers and databases to share

data in real time

- Data Synchronization – to allow the sharing of data between servers and remote

devices when connectivity is temporary

It’s intended in the term of this project to investigate and develop adaptation

framework for extracting data and transformation it into specific designated format.

1.2.3 Software integration

Application integration – another part of general adaptation task. The data is generated by

different resources with specific applications. Considering this part of integration we can

distinguish following application specific features:

- application functions

- application APIs

- application interfaces

 All variations of these features have effect on process of adaptation and architecture of

adaptation framework.

 7

2 Description of concepts
Definition of concepts is given in context of Adaptation task thus some definitions can

expand ones given in previous project papers.

2.1 SmartResource

Under SmartResource we will understand conjunction of Real World Resource (RWR),

Adapter and Agent. Concept SmartResource represents exactly one RWR. It has one

Adapter and one Agent

2.2 Real World Resource

Real World Resource is a complex concept compounded from first part software

component which provides access interface to second part real world entity. In wide sense

notion of RWR is to represent some entity in real world for which adaptation framework

can be applied. In context of industrial self maintenance goals of this project real world

entity is Device, Human or Web Service.

2.3 Web Service

Web Service – WEB based software application that performs specific functions for

anyone ordered this service [SWGuide]. Service class is subset of RWR.

 8

2.4 Human

Human – any person (expert, operator, dispatcher) who interacts with other smart

resources. Human class is subset of RWR.

2.5 Adapter

Adapter is a software component which provides bidirectional bridge between software

component specific interface of RWR and General Interface to Agent.

2.6 Agent

Agent is a software component which represents interests of RWR in Semantic Web

environment in wide sense, and in Global Understanding eNvironment (GUN) in sense of

this project.

2.7 Global Understanding eNvironment

Global Understanding Environment – virtual environmental with appropriate architecture

for unified interaction between Smart Resources

2.8 Adaptation

Adaptation in wide sense is a process of enabling RWR to participate in GUN. This

definition indicates requirements to functionality of both components of SmartResource -

Adapter and Agent; requirements to protocol of interaction between Adapter and Agent,

Agent to Agent; requirements to overall infrastructure of GUN.

Adaptation in narrow sense is a process of enabling interaction between RWR and Agent

through Adapter.

2.9 General Adaptation

All consideration of previous subchapter remains valid. Term “General” points on

combined wide sense of Adaptation process and wide sense of RWR notion.

 9

Two main layers are planned to use for general adaptation framework design:

The fist is well thought-out object-oriented design, based on design patterns. This layer is

aimed to elaborate the architecture and components interaction for reuse of already

developed components in adapter construction process. In other words, the adapter should

be split into elementary “bricks”. The components of adapter can be divided into reusable

components, which are common for certain types of resources and into specific ones,

which might cover resource-specific parts.

Second layer concerns the design of semantic annotation for process of assembling the

adapter. This aims at minimization of the human involving into process of adapter

assembling. Now it’s impossible to omit human’s involving in assembling process at all,

but with well designed ontology and assembling framework there is possibility to ease this

process. We distinguish two kinds of ontologies: first ontology which describes semantics

of problem domain – so-called upper ontology, and concrete ontologies which describe

semantics of characteristics of particular resources. Every resource should be semantically

annotated to provide knowledge for inference.

2.10 Place of SmartResource

We can call our research SmartResource centric. In higher abstract level we will deal with

ad-hoc network of SmartResources.

2.11 RDF

The Resource Description Framework (RDF) is a framework for representing information

in the Web [RDF]. It is intended to integrate a variety of application using XML for syntax

and URIs for naming [SemanticWeb].

2.12 RscDF

Resource State Condition Description Framework – enhancement for standard RDF, which

reflects specifics of industrial domain

 10

2.13 Ontology

Ontology are about vocabularies and their meaning, with explicit, expressive, and well-

defined semantics. [SWGuide]

2.14 GUN Adapter

The concept of GUN (Global Understanding eNvironment) Adapter assumes an adaptation

of every object from physical world to Semantic Web environment. GUN Adapter is

represented by integrated software/hardware components, which on the one hand

implement object-specific functionalities and on the other hand – common for whole

Semantic Web environment functionalities. The Adapter translates interaction activities

from device-specific format to Semantic Web one and vice versa. Adapter also

supplements real-world object with agent functionality, implicit purpose of the object

becomes explicit goal of an agent.

+ =

GUN agent

agent functionalities: goal, communication,
etc. mapping of object-specific

functionalities to Semantic Web.

object-specific
functionalities

The ideal GUN Adapter must adapt to a specific object automatically. The set of GUN

agents can be joined into cluster (OntoShell) [OntoShell] and the cluster will be

represented for external world as a single entity. Example: industrial plant GUN agents

 11

(adaptated field devices) are joined into a cluster and other plants sense it as a single entity

[GUN].

As for implicit purpose of the object we can remember pills: they were manufactured for

certain diseases, has strict application instructions. There can be a supplier of this product –

some store, method, price and scope of delivery, business description. If to supplement the

pills to the GUN agent and place it in some environment that supports such agents owners

of the pills can forget about this object – agent will take care about it.

Present Web resources don’t have their purpose explicit: who can find it, what should be

noticed. OntoShell is an active resource; Adapter supplements the passive resource with

active functionalities. As a result Semantic Web is populated by active, goal-oriented

agents.

 12

3 Ontology design
The following ontologies must be developed:

1. 1. Industrial Devices ontology, which will include metadata about industrial
devices.

s

…

s

Valve

t
Class Device

…

…

Industrial Devices upper ontology

2. Industrial Device Data ontology. It will reflect the requirements for data entities
provided by Field Device. The ontology might look like:

Device DataEntity provides

Class

value

t

PrimitiveDataType

hasType

t

unit

DataUnit

t

Literal

Industrial Device Data upper ontology

3. Industrial Device Data Access Methods ontology. It will classify all existent
methods of programming access to Field Device data. Example of such ontology:

 13

DataEntity isAccessedBy AccessMethod

Remote Local

Dll

s

functionCall

Literal

Literal

value

PrimitiveDataType

#uri

accessHost

sqlQuery

Literal

cgiQuery

Literal

s

HTTP

s

DB

hasType

accessPort Port

…

…

s s

t Class

Industrial Device Data Access Methods ontology

As we can see, all the ontologies depicted above have relations one to other. The last

ontology – Industrial Device Data Access Methods – is necessary just for configuration of

Adapter. When somebody wants the Adapter to access data coming from some industrial

device he must select appropriate AccessMethod from this ontology. After the method has

been defined the additional attributes correspondent to the method must be defined too. If,

for instance, user selected DB class as access method to the value of temperature in the

valve, he must define an sqlQuery, which retrieves necessary from database. When all

necessary data has been provided in the form correspondent RDF-instance is created. This

RDF-instance is sent to software module, which tailors Adapter for specific industrial

device. Semantic annotation of such data allows to compose Adapter automatically.

Thus, for every specific method of access to device data must be implemented a piece of

code. If suddenly user while configuration of Adapter doesn’t find appropriate access

method in the ontology it means that correspondent piece of code haven’t been

implemented yet. In this case Adapter has to be configured for this type of device.

 14

The process of Adapter configuration can be depicted as the following:

device-specific
data access

module
Adapter

DataBase

Ontology-based
configuration broker

Onto
Adapter

Process of Adapter configuration

 15

4 Scenarios of Interaction
Main purpose of scenario is to capture features of interoperation in sense of Actor’s roles

and methods of communicational infrastructure. All scenarios are considered using client-

service paradigm of communication. Essential part of this paradigm is a request-response

pattern of communication Operational logic of semantic adaptation is encapsulated in

request and response objects. Scenarios are presented using UML Use Case diagrams in

which our project software components are represented as Actors. And methods of

underlying connection infrastructure are represented as usecases. To distinguish usecases

which are used to depict Adapter functionality in this chapter they are referred as

scenarios. Figure shows reference Use Case diagram of client-service scenario.

Agent, Adapter and Resource became Actors and have semantic of some of three roles

depending on context of interaction. Taxonomy of Actor concept is depicted in figure

These roles are

 16

• Client is an Actor which usually initiate a communication scenario making request
to other actors

• Service processes and generate responses on clients requests
• Facilitator performs an action either client or server role on behalf of another actor.

Sequence diagram of typical client-service interaction is illustrated on figure .

4.1 SmartResource internal scenarios

Before modeling of Adapter functionality firstly this subchapter defines internal limited by

SmartResource concept scenarios of interaction between components such as Agent, RWR

and Adapter without considering cases when interaction of these components is initiated by

other resources.

The main idea is that

• Adapter represents an Agent for a RWR in scenarios where RWR initiates
communication.

• Adapter represents a RWR for an Agent in scenarios where Agent initiates
communication.

Thus Adapter on the level of communication between Agent and RWR performs role of

facilitator.

One more comment that Agent to RWR and RWR to Agent scenarios are a reverse from

each other. But in report all description is repeated to explicitly define interoperation

among SmartResource components because of some nuances.

 17

4.1.1 Agent to RWR

Scenario name: Agent2RWR business view

Scenario: Agent initiates communication by sending a request to RWR. RWR processes

request to generate response. RWR responds to request of Agent by sending a response.

Initiator: Agent

Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication.

Agent to Adapter

Scenario name: Agent2Adapter

Scenario: Agent initiates communication by sending a request to Adapter. Adapter

processes request to generate response. Adapter responds to request of Agent by sending a

response. Adapter represents an RWR in case when Agent requests for interaction with

RWR. Thus Adapter is in role of facilitator on behalf of RWR. However Adapter can

process Agents requests on behalf of itself.

Initiator: Agent

Service: Adapter

 18

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

Adapter to RWR

Scenario name: Adapter2RWR

Scenario: Adapter initiates communication by sending a request to RWR. RWR processes

request to generate response. RWR responds to request of Adapter by sending a response.

Adapter is always in role of facilitator in sense of operating on behalf of Agent and in role

of client in sense of initiating communication with RWR.

Initiator: Adapter

Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

 19

Agent to RWR communication

Scenario name: Agent2RWR

Scenario: Agent initiates communication by sending a request to RWR. To do this

accordingly toAgent2Adapter scenario Agent requests Adapter which operates as service

on behalf of RWR. Then Adapter forwards as client request to RWR on behalf of Agent

accordingly to Adapter2RWR scenario. RWR processes request to generate response.

RWR responds to request of Agent by sending a response. To do this accordingly to

RWR2Adapter scenario RWR responds to Adapter which represents Agent and operates as

client. Then Adapter forwards response to Agent on behalf of RWR operating as service.

Initiator: Agent

Facilitator: Adapter

Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication. Request includes

Agent2Adapter scenario Request and Adapter2RWR scenario Request. Respond includes

RWR2Adapter scenario Respond and Adapter2Agent scenario Respond. Adapter as a

software component appears in roles of client and service performing also representative

role of facilitator.

 20

4.1.2 RWR to Agent

Scenario name: RWR2Agent business view

Scenario: RWR initiates communication by sending a request to Agent. Agent processes

request to generate response. Agent responds to request of RWR by sending a response.

Alternative: RWR initiates communication by sending a request to Agent. Agent processes

request. In such case interoperation goes without feedback link of response.

Initiator: RWR

Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication.

 21

Alternative scenario: RWR initiates communication by sending a request to Agent. Agent

processes request. In such case interoperation goes without feedback link of response.

RWR to Adapter

Scenario name: RWR2Adapter

Scenario: RWR initiates communication by sending a request to Adapter. Adapter

processes request to generate response. Adapter responds to request of RWR by sending a

response. Adapter is always in role of facilitator in sense of operating on behalf of Agent

and in role of service in sense of processing the requests of RWR.

Initiator: RWR

Service: Adapter

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

 22

Alternative scenario: RWR initiates communication by sending a request to Adapter.

Adapter processes request.

Adapter to Agent

Scenario name: Adapter2Agent

Scenario: Adapter initiates communication by sending a request to Agent. Agent processes

request to generate response. Agent responds to request of Adapter by sending a response.

Adapter operates on behalf of an RWR and thus in facilitator role. However Adapter can

generate request on behalf of itself.

Initiator: Adapter

Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

 23

Alternative scenario: Adapter initiates communication by sending a request to Agent.

Agent processes request.

RWR to Agent communication

Scenario name: RWR2Agent

Scenario: RWR initiates communication by sending a request to Agent. To do this

accordingly toRWR2Adapter scenario RWR requests Adapter which operates as service on

behalf of Agent. Then Adapter forwards as client request to Agent on behalf of RWR

accordingly to Adapter2Agent scenario. Agent processes request to generate response.

Agent responds to request of RWR by sending a response. To do this accordingly to

Agent2Adapter scenario Agent responds to Adapter which represents RWR and operates

as client. Then Adapter forwards response to RWR on behalf of Agent operating as

service.

Initiator: RWR

Facilitator: Adapter

 24

Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication. Request includes

RWR2Adapter scenario Request and Adapter2Agent scenario Request. Respond includes

Agent2Adapter scenario Respond and Adapter2RWR scenario Respond. Adapter as a

software component appears in roles of client and service performing also representative

role of facilitator.

Alternative scenario: RWR initiates communication by sending a request to Agent. To do

this accordingly toRWR2Adapter scenario RWR requests Adapter which operates as

service on behalf of Agent. Then Adapter forwards as client request to Agent on behalf of

RWR accordingly to Adapter2Agent scenario.

 25

4.1.3 SmartResource internal interoperation

 26

5 Adapter software component design for semantic adaptation
We consider at the beginning of the chapter only case when an Agent initiates

communication to a Resource. So everywhere interoperation is considered from an Agent

point of view. In other cases comments are given.

5.1 Adapter – abstract realization

Form Adapter as a software component only one functionality is required, that is to

provide unified interface to resource. Agent performs requests to Resource to get data

about its state. So Adapter is a software component which serves one Agent to access one

Resource. Adapter as software component is referred further as Adapter application.

This subchapter captures process of requesting Resource. Figure represents this using Use

Case diagram.

On this figure Agent is an external actor

5.1.1 Adapter Class Diagram

“Adapter” is a class which implements adaptation functionality and in this case represents

whole Adapter application which creates instance “adapter”. The Adapter class is an

implementation of “Facade” pattern of software design [1]. This class contains reference to

an instance “rwr” of “Rwr” class and an instance “transformator” of “Transformator” class.

“Agent” is a class to represent external actor Agent in a role of client for the Adapter

application. This is an abstract class and is a base class for creating concrete class to

implement functionality of interaction with external actor Agent to perform requests to

 27

external actor RWR. Agent class contains a reference to Adapter class to be able to invoke

method requestRwr.

“Rwr” is a class to represent external actor RWR in a role of service for the Adapter

application. This is an abstract class and is a base call for creating concrete class to

implement functionality of interaction with external actor RWR to process requests of

external actor Agent and to generate response to the actor Agent.

Agent and Rwr are the “border” classes in sense of capturing all important features of

external to Adapter application actors.

“Transformator” is an abstract class to define also in abstract way transformation methods

of from Agent request to Rwr request and from Rwr response to Agent response

transformation. This class is dedicated to define a starting point for subsystem which

encapsulates semantic adaptation.

5.1.2 Adapter creation

As it was said before Adapter is a “Facade” class for whole application, this means that

instance of Adapter has references to instances of other “border” classes Agent and Rwr

and “utility” class Transformator.

So at the point of Adapter instance creation all other instances should be created too.

Agent, Rwr and Transformator classes are designed accordingly to “Singleton” pattern of

 28

software design. This pattern ensures that only one instance of a class exists in the system.

Thus we meet logic of the domain that adapter serves one agent and one resource.

getInstance is a static method in all classes. As Agent, Rwr and Transformator are abstract

classes, they cannot have instances. So this method returns instances of the classes which

extend these abstract ones and implement concrete logic. Process of creation instances of

subclasses and code of this method is described by subchapter “Run-time Adapter

configuration”

Figure shows collaboration diagram of Adapter creation. If Adapter as class is a part of

Agent application then creation is performed by calling constructor of Adapter class from

some point of Agent application. If Adapter class is standalone application then it has static

method main as entry point and creates instance of itself in this method by calling a

constructor too. Then instance of Adapter class invokes getInstance methods of Agent,

Rwr and Transformator classes to serve interaction between them. Instance of Agent class

gets reference to instance of Adapter class to be able to invoke Adapter class method

requestRwr.

5.1.3 Protocol Class Diagram

Figure introduces abstract classes of requests and responses to define in abstract way

process of semantic adaptation of external actor Agent to external actor RWR. This is

achieved by including four classes without fields and methods. Notion of these classes is to

 29

support signature of request and transformation methods in Adapter, Agent, Rwr and

Transformator classes.

Concrete realization of request and response logic depends from nature of external actors

Agent and RWR and this logic is encapsulated in subclasses which are defined in

subchapter “Adapter with concrete realization”. So informally these classes serve as

dummies on this stage of software design.

5.1.4 Agent to RWR communication

Sequence of methods invocation to perform request from Agent class instance to Rwr class

instance is shown in figure. The agent is an instance of the class Agent, the adapter is an

instance of the class Adapter and the rwr is an instance of the class Rwr.

1 The agent creates instance x of the class FromAgentNativeRequest
1.1 The agent invokes method requestRwr using reference of to the adapter (see

subchapter 4.1.2) passing x as a parameter and getting an instance y of the class
ToAgentNativeResponse

1.2 The adapter after a stage of request transformation (see next subchapter) has an
instance x’ of the class ToRwrNativeRequest and invokes method request using
reference to the rwr passing x’ as a parameter and getting an instance y’ of the class
FromRwrNativeResponse

1.3 The rwr on method request invocation generates an instance y’ of the class
FromRwrNativeResponse

More precisely this abstract process of the semantic adaptation is described in next chapter

 30

5.1.5 Abstract view on semantic adaptation process

Figure gives abstract view using Collaboration diagram on process of semantic adaptation.

The agent, adapter, rwr, x and y’ are the same instances as in Figure in previous chapter.

The transformator is an instance of the class Transformator and the x’ is an instance of the

class ToRwrNativeRequest and the y is an instance of the class ToAgentNativeResponse.

1 The agent creates x
1.1 The agent invokes method requestRwr of the adapter passing x as a parameter
1.2 The adapter invokes method transformAgentRequest of the transformator

forwarding x as a parameter
1.3 The transformator creates and returns x’ performing semantic adaptation of agent

native request model which is encapsulated in x to rwr native request model which
is encapsulated in x’

1.4 The adapter invokes method request of the rwr passing x’ as a parameter
1.5 The rwr creates y’ and returns it to the adapter as response
1.6 The adapter invokes method transformRwrResponse of the transformator

forwarding y’ as a parameter
1.7 The transformator creates and returns y performing semantic adaptation of rwr

native response model which is encapsulated in y’ to agent native response model
which is encapsulated in y

 31

So as you can see instances of protocol classes are real bearers of the Agent to RWR

request and response semantics.

Creation of the instances of the concrete protocol classes which capture semantic of

request and response interfaces of external actors Agent and RWR is a subject of the next

subchapter.

5.2 Adapter with concrete realization

5.2.1 Concrete Adapter Class Diagram

 32

5.2.2 Concrete Adapter creation

5.2.3 Concrete Protocol Class Diagram

 33

5.2.4 Agent to Rwr communication with concrete realization

5.2.5 Semantic adaptation with concrete realization

Sequence of method invocation and request/response creation for semantic adaptation

process with pieces of source code.

1:

ConcreteFromAgentNativeRequest x = new ConcreteFromAgentNativeRequest();

return x;

1.1:

ConcreteToAgentNativeResponse y =

(ConcreteToAgentNativeResponse)super.adapter.requestRwr(x);

1.2:

 34

ToRwrNativeRequest x’ = transformator.transformAgentRequest(x);

1.3:

ConcreteToRwrNativeRequest x’ = new ConcreteToRwrNativeRequest();

return x’;

1.4:

FromRwrNativeResponse y’ = rwr.request(x’);

1.5:

ConcreteFromRwrNativeResponse y’ = new ConcreteFromRwrNativeResponse();

1.6:

ToAgentNativeResponse y = transformator.transformRwrResponse(y’);

1.7:

ConcreteToAgentNativeResponse y = new ConcreteToAgentNativeResponse();

5.2.6 Partitioned logic of semantic adaptation

ConcreteAgent class as an encapsulation of logic of an external actor Agent depends from

realization of ConcreteFromAgentNativeRequest and ConcreteToAgentNativeResponse

classes. Thus development of this domain can be performed independently from particular

nature to an external actor RWR. So ConcreteAgent class captures model of

request/response interface, model of underlying data which encapsulated in Agent side

protocol concrete classes and logic of interoperation within external actor Agent as it is

shown in figure.

 35

ConcreteRwr class as an encapsulation of logic of an external actor Rwr depends from

realization of ConcreteToRwrNativeRequest and ConcreteFromRwrNativeResponse

classes. Thus development of this domain can be performed independently from particular

nature to an external actor Agent. So ConcreteRwr class captures model of

request/response interface, model of underlying data which encapsulated in Rwr side

protocol concrete classes and logic of interoperation within external actor Rwr as it is

shown in figure.

ConcreteTransformer performs the main job of semantic adaptation. This class depends

only from the models of Agent class to Adapter class and Adapter class to Rwr class

interfaces which are encapsulated in four concrete protocol classes.

 36

This class implements method of Agent class request to Rwr class request adaptation and

method for corresponding adaptation of responces.

Thus by such software design we achieved:

• Abstract level design to capture interoperation and task of semantic adaptation is
proposed

• Concrete realization can be done by extending proposed abstract design
• Implementation of external actor Agent dependent part, external actor RWR

dependent part and logic of semantic adaptation is separated from each other and
can be performed for different options independently.

 37

5.2.7 Run-time concrete realization loading

Runt-time concrete realization loading should be performed accordingly to configuration

defined by ontologies described in chapter 3.

 Class clas = Class.forName(name);

 instance = (Agent)clas.newInstance();

 Class clas = Class.forName(name);

 instance = (Rwr)clas.newInstance();

 38

 Class clas = Class.forName(name);

 instance = (Transformator)clas.newInstance();

 39

6 Adaptation of Human, Device and Web Service using GAF

6.1 Human adaptation

At first sight it seems that human is the most difficult part for adaptation, but when we take

a closer look we can distinguish basic roles of human as a proactive resource. First of all

human may act as a web-service, for example for image recognition. So human can be

annotated as a web-service with its inputs and outputs formalization. Second human may

be looking for some service or data, then human’s agent should contain certain functional

features for human’s orders execution. It can be for example search features, accounting or

shopping. Human’s agent should be extensible. In other words it must be extensible via

plugins and of course configurable.

6.2 Device adaptation

6.3 Web Service adaptation

Service as a resource has its own specific features, which distinguish it from Device and

Human. First, let’s take a look at existing technologies in web-service integration. Below is

the web-services stack proposed by W3C consortium.

6.3.1 W3C stack

The W3C Web Services Workshop, led by IBM and Microsoft, has agreed that the

architecture stack consists of three components: Wire, Description, and Discovery.

Wire stack

The following table shows what layers constitute the Wire Stack.

Other "extensions"
Attachments Routing

Security Reliability
SOAP/XML

XML

 40

Table 1.1 – W3C Wire Stack

Wire Stack has extensions to two layers: SOAP and XML. This means whenever the

SOAP is used as the envelope for the XML messages, they must be attached, secure,

reliable, and routed to the intended service requester or provider. In the stacks of other

organizations, SOAP and XML are not treated as "extensions." IBM, for instance, refers to

SOAP as a tool for its stack layer, "XML-Based Messaging."

Description stack

The Description Stack, the most important component, consists of five layers:

Business Process Orchestration
Message Sequencing
Service Capabilities Configuration

Service Interface WSDL Service Description (WSDL) Service Description
XML Schema

Table 2.5 – W3C Description Stack

This stack starts with orchestration of business processes from which the messages are

sequenced, depending on how service capabilities are configured.

W3C uses WSDL to describe service interface and service implementation, neither of

which is explicitly highlighted in other stacks.

Discovery stack

As the name implies, the Discovery Stack involves the use of UDDI, allowing businesses

and trading partners to find, discover, and inspect one another in a directory over the

Internet, as follows:

Directory (UDDI)

Inspection

Table 2.6 - W3C Discovery Stack

 41

The Inspection Layer refers to WSIL (Web Services Inspection Language) and WS-

Inspection specifications.

Putting all three stack-components together, we have the Architecture Stack.

Other "extensions"
Attachments Routing

Security Reliability
SOAP/XML
XML

Business Process Orchestration
Message Sequencing
Service Capabilities Configuration

Service Interface WSDL Service Description (WSDL) Service Description
XML Schema

Directory (UDDI)

Inspection

Table 2.7 – W3C architecture stack

Today, SOAP (Simple Object Access Protocol), WSDL (Web Services Description

Language), and UDDI are emerging as the Internet de facto standards for Web services.

SOAP has been accepted and is being standardized by the World Wide Web Consortium

(W3C). WSDL has been submitted to the W3C for standardization, and is emerging as the

de facto standard language for the description of Web services. UDDI is poised to be the

de facto standard for the Web service repository.

SOAP, WSDL and UDDI provide a “grammar” for web-service definition. In general they

define certain ontology for service representation. This ontology can be reused in General

Adaptation Framework and furthermore, can be extended via semantic unambiguous

descriptions of parameters, for automation of service integration, orchestration and

discovery.

 42

References
[RDF] Resource Description Framework specification site, http://www.w3c.org/RDF/

[PracticalRDF] Shelley Powers, ”Practical RDF,” O’Reilly, 2003, 350 pages, ISBN 0-596-

00263-7

[SemanticWeb] Semantic Web activity site, http://www.w3c.org/2001/sw/

[OWL] Web Ontology Language specification site, http://www.w3c.org/2004/OWL/

[XML] Extensible Markup Language specification site, http://www.w3c.org/XML/

IOG, 2004] Official Web-Site of Industrial Ontologies Group, http://www.cs.jyu.fi/ai

/OntoGroup .

[DAML+OIL] DAML+OIL language web page, http://www.daml.org/2001/03/daml+oil-

index.html

[DAML-S] DAML-S 0.7 Draft Release, http://www.daml.org/services/daml-s/0.7/

[Ermolayev et al., 2004] Ermolayev V., Keberle N., Plaksin S., Kononenko O., Terziyan

V., <http://www.cs.jyu.fi/ai/papers/IJWSR-2004.pdf>Towards a Framework for Agent-

Enabled Semantic Web Service Composition, International Journal of Web Service

Research, Idea Group, ISSN: 1545-7362, Vol. 1, No. 3, 2004, pp. 63-87.

[GUN] Global Understanding Environment concept, http://www.cs.jyu.fi/ai/papers

/HCISWWA-2003.pdf

[IBM WSCA] IBM Web Services Conceptual Architecture document, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[Kaykova et. al., 2004] Kaikova H., Khriyenko O., Kononenko O., Terziyan V., Zharko A.,

Proactive Self-Maintained Resources in Semantic Web, Eastern-European Journal of

Enterprise Technologies, Vol. 2, No. 1, 2004, ISSN: 1729-3774, Kharkov, Ukraine, pp. 37-

49

 43

http://www.w3c.org/RDF/
http://www.w3c.org/2001/sw/
http://www.w3c.org/2004/OWL/
http://www.w3c.org/XML/
http://www.cs.jyu.fi/ai /OntoGroup
http://www.cs.jyu.fi/ai /OntoGroup
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/services/daml-s/0.7/
http://www.cs.jyu.fi/ai/papers/IJWSR-2004.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf

[SmartResource, 2004] Proactive Self-Maintained Resources in Semantic Web,

Presentation of SmartResource Tekes Project, http://www.cs.jyu.fi/ai/OntoGroup

/SmartResource.ppt

[Terziyan, 2003] Terziyan V., <http://www.cs.jyu.fi/ai/papers/HCISWWA-2003.pdf>

Semantic Web Services for Smart Devices in a "Global Understanding Environment", In:

R. Meersman and Z. Tari (eds.), On the Move to Meaningful Internet Systems 2003:

<http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html> OTM 2003 Workshops,

Lecture Notes in Computer Science, Vol. 2889, Springer-Verlag, 2003, pp.279-291.

[WSArchitect] Judith M. Myerson, “Web Service Architectures”, http://www.webservices

architect.com/content/articles/webservicesarchitectures.pdf

[WSDL] Web Services Description Language submission, http://www.w3.org/TR/wsdl

[WSFL] Web Services Flow Language specification by IBM, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[W3C] World Wide Web Consortium site, http://www.w3.org/

[OntoShell] COMMUNITY FORMATION SCENARIOS IN PEER-TO-PEER WEB

SERVICE ENVIRONMENTS, Olena Kaykova , Oleksandr Kononenko , Vagan Terziyan

, Andriy Zharko

[SWGuide] Michael C. Daconta, Leo J. Obrst, Kevin T. Smith. The Semantic Web: A

Guide to the Future of XML, Web Services, and Knowledge Management. John Willey &

Sons. 2003. 281 p.

 44

http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.cs.jyu.fi/ai/papers/HCISWWA-2003.pdf
http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html
http://www.webservices architect.com/
http://www.webservices architect.com/
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

IOG

GENERAL ADAPTATION FRAMEWORK (PART II)

Technical report

SmartResource: Proactive self-maintained resources in Semantic Web

2/24/2005

 45

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi

Title: General Adaptation Framework (Part II)

Work: Technical report

Status of document: working draft

Number of Pages: 26

Keywords: General adaptation framework, Semantic Web, Agent, Device, Human,

Expert, Software Interface, Industrial Maintenance, Global Understanding Environment

Abstract: This document continues the work described in the Part I of the corresponding

technical report and goes deeper in the development of the General Adaptation

Framework.

 I

Abbreviations

OWL – Web Ontology Language

RDF – Resource Description Framework

RDFS – RDF Schema language

XML – eXtensible Markup Language

 II

Contents

1 INTRODUCTION ...1

2 APPROACH TO GENERAL ADAPTATION FRAMEWORK.............................2

2.1 DATA MODELS ..3

2.2 PROCESSES IN GENERAL ADAPTATION FRAMEWORK..7

3 SEMANTIC ADAPTATION..9

3.1 SEMANTIC ADAPTATION EXAMPLE...10

3.2 ELABORATION OF SEMANTIC ADAPTATION APPROACH...13

3.3 ONTOLOGY-TO-ONTOLOGY MAPPING..16

3.4 MODEL-TO-MODEL MAPPING ..17

3.5 ADAPTER AS SOFTWARE DESIGN ...19

REFERENCES...22

 III

7 Introduction
There is a diversity of heterogeneous systems, applications, data formats and ways of

interaction. All those systems were tailored for particular tasks, purposes and goals. The

world is heterogeneous and we face the challenge trying to integrate heterogeneous

systems into a unified environment. The “Smart Resource” project has encountered exactly

such kind of a problem.

“General adaptation” assumes a design of a sufficient framework for an integration of

different (by structure and nature) resources into Global Understanding eNvironment

(GUN). This environment will provide a mutual interaction between heterogeneous

resources. Adaptation assumes elaboration of a common mechanism for new resource

integration, and its provision with a unified way of interaction.

The main idea of adaptation is based on a concept of “adapter”, which plays role of a

bridge between an internal representation of resource and a unified environment. Adapter

is a software component, which provides a bidirectional link between a resource interface

and an interface of the environment.

GUN assumes interoperability of SmartResources; by Smart Resource we mean a

conjunction of Real World Resource (RWR), Adapter and Agent. By extending RWR

within Adapter and Agent we make it GUN compatible. General Adaptation includes

development of Adapter for RWR.

 1

8 Approach to General Adaptation Framework
The primary intention behind the General Adaptation Framework (GAF) is a design of

common framework for adaptation of heterogeneous resources. The design of the

framework will be divided into two layers:

1. Structured software design for modules, classes, behavior and protocols;

2. Semantic adaptation of different formalizations of the industrial maintenance

domain edges.

GAF includes the following components:

1. Model, which consists of the submodels:

o Adapter Functionality;

o Data representation standards;

o Software interfaces;

o Semantic Adaptation (data mapping model);

o Adapter Configuration Properties.

2. Process, which consists of the subprocesses:

o Adapter Development;

o Adapter Composition;

o Adapter Deployment;

o Adapter Operation.

3. Tool set, which provide an UI for specification of problem domain features

according to the GAF model; support of activity within GAF process and

corresponding users

4. Scenarios that comprise roles of participants in Adaptation Processes and their

interaction with Tool set and submodels.

 2

8.1 Data models

Arbitrary number of standards exists, which define each other on different levels of

abstraction and thus form a hierarchy:

Standard n
defines

… Standard 2
defines

Standard 1
defines

Formal data

representation

One of the data models, which have recently gained wide adoption, is XML – Extensible

Markup Language. The data representation using XML can be represented by the

following figure (see Figure 1):

 Problems

domain
Problem domain

XML Schema Specifications

XML Schema

XML Specifications

XML document

Figure 1 - XML data representation

 3

The older and more tested data representation standard is Database Model (see

Figure 2):

The novel data representation standard

OWL (see Figure 3):

Figure 3 - S

RDF Specifications

OWL/RDFS Specifications

SQL

Content of DB

DB Schema

Problem domain

DML Specification

DDL Specification

Relational Model

Problems

domain

Figure 2 - n
Database data representatio
s, which focus primarily on semantics, are RDF and

emantic data representation

Problem domain

RDF document

RDF Schema/Ontology

Problems

domain

 4

In fact, arbitrary data representation schema looks like it is shown on Figure 4:

 Abstract problem
domains

Concrete problem

domain

Model Specification Domain specific model

Data Representation Syntax

Specification
Domain specific data

Figure 4 - Arbitrary data representation

More abstract models define more specific ones. In different cases arbitrary number of

models can be found in chains and layers (see Figure 5).

Domain … Domain Domain

Abstract

Figure 5 - Nested models

Semantic adaptation results in a mapping of data encoded according to one model to

another model of data representation (see Figure 6):

Model Specification

Concrete

Domain specific modelModel Specification …

 5

The most commonly used data represe

and RDF-model. Thus, any problem d

(see Figure 7):

P

Figure 7 - Pos

The problem domain of the SmartRes

all its concepts are included into Rsc

Framework). Finally, we get a Layered

Content of DB

DB Schema RDF Sc

RDF d

Relational OW
model

Figure 6 - n

Model 1 Model 2 Adaptation

Encoded data Encoded data
Model-to-model adaptatio
ntation standards are Relational model, XML-model

omain can be formalized using these data models

roblem domain

sible formalization of a domain

ource project utilizes RDF for its formalization and

DF-schema (Resource State/Condition Description

 Cake of Specifications (see Figure 8):

XML document

XML Schema hema/Ontology

ocument

L/RDFS/RDF XML

 6

OWL Specification as a language for
RscDF Schema

RDFS Specification as a language for
RscDF Schema

RDF Specification as a language for

ta reda presentation in RscDF document

XML as a language of RscDF Schema

and document serialization

RscDF Schema of the maintenance domain

RscDF document with encoded data

Figure 8 - SmartResource Layered Cake of Specifications

8.2 Processes in General Adaptation Framework

The Processes that are included into GAF will be described according to the Template:

o Preconditions for process start;

o Process execution;

o Result.

Adapter operation process:

Preconditions: Deployed Adapter;

Process description: Automated on-line interoperability and data mapping between

Agent and RWResource;

Result: GUN-compatible Resource.

Adapter deployment process:

Preconditions: Composed Adapter;

Process description: 1) Specification of Adapter runtime property values according

to a submodel of Adapter Configuration Properties; 2) Adapter Installation.

Result: Deployed Adapter, ready to operate.

Adapter composition process:

Preconditions: 1) New combination of interoperating modules (e.g. another

Network connection standard) or/and; 2) New data schema for already supported

data model occurrence.

 7

Process description: 1) Software Modules Composition: Modules selection;

Modules assembling; Adapter Functionality Semantic Specification. 2) Semantic

adaptation: New class definition (resource declaration in the ontology); Creation of

new properties for a new class (if needed); Device’s interface properties definition

(connection type, data types, etc. Taken from ontology); Mapping of resource’s

data representation to RscDF data representation;

Result: Composed (Deployable) Adapter; Specified Adapter Functionality; Adapter

Configuration Properties template (allowed values, etc.)

Adapter development process:

Preconditions: RWResource with a specified interface and a data format; Access to

Semantic Adaptation, Data representation standards, Software interface models;

Ontology mapping/editing tool (mapping to already existent standards of

communication and data representation).

Process description: Software development process; Semantic annotation of the

Developed Modules.

Result: Software modules for data access or transformation; Documented and

registered in ontology.

 8

9 Semantic Adaptation
During the data transformation process, Data Transformer involves format’s metadata

(schemas) and transformation rules. Schemas, rules and underlying ontologies constitute

the semantic adaptation.

The tasks of Semantic Adaptation are the following:

1. Semantic Adaptation defines a functionality to work with semantics of:

o Adapter Functionality (Services provided by the adapter);

o Data representation standards and models of the adapted systems;

o Software interfaces standards of the adapted systems;

o Configuration properties of the adapter runtime environment.

2. Semantic Adaptation uses an Ontology-based approach to define the semantics

mentioned above:

o This involves associating commonly understood meaning to the definition

of adapter properties, functionality, configuration, and associated meta-data

standards.

Semantic Adaptation requires the following stages:

1. Analysis of problem domain and elaboration of a conceptual model;

2. Analysis of data representation formats;

3. Analysis of corresponding metadata (particular Database schema, for instance);

4. Analysis of a standard’s specification (e.g. XML Schema Specification standard);

5. Elaboration of the model for transformations of particular standards of data

representation;

6. Specification of data mapping rules;

7. Choosing and/or Development of the mechanism or tool of transformation

(appropriate patterns, APIs etc).

 9

9.1 Semantic Adaptation Example

To understand better the stages of Semantic Adaptation let us consider an example. The

problem domain will be a paper machine and the process of paper manufacturing (see

Figure 9). The first stage of the adaptation will be elaboration of a conceptual model for

the selected domain. Firstly, the domain description in a natural language must exist. It can

be made either separately, or existing specifications can be used. The main point is that this

description must contain all important aspects of the problem domain. For our domain, the

description can include such phrases as “a paper machine produces paper, uses cellulose”,

etc.

After the mentioned domain description, domain decomposition follows based on the

domain description. On this stage, entities, classes, properties, relations, behaviors of the

problem domain are distinguished. After the necessary decomposition has been made,

domain formalization is performed using any appropriate data models. It can be ER-

diagrams (Entity Relationship), UML, Ontology, etc.

Decomposition Description Formalization

Figure 9 - Adaptation of paper machine domain

After the mentioned stages of the adaptation, analysis of data representation format follows

(see Figure 10). It includes analysis of the data format type (XML, text file, Excel table,

Oracle database, etc.), types of APIs that can be used in the domain (SQL-queries, Java

DOM API, XQuery, etc.), access methods to data (JDBC, OLE, etc.), sorts of standards

that are used to represent a format (ASCII, W3C-family standards).

 10

y

I

Figure 10

The next stage of Semantic Adaptation

Figure 11). This stage includes analys

types, etc.), possible variations (XML

restrictions (nesting of classes, range, et

 Figure 1

Further stage of the Adaptation is Ana

analysis of standard specification (syn

formal theory (relational algebra, fram
XML format
y
d
Accessed b

i

c.

1

ly

t

e

Standar
for our cho

s of data s

tags or val

).

 -

sis of stan

ax, vendor

 model, e

 11
Processed b
y

Java AP

W3C family
sen

chem

ues,

dard

s, sc

tc.),
XQuer
t
- Analysis of data representation forma
domain is Metadata analysis (see

a used (elements, relationships,

etc.), hierarchy of elements and

Analysis

SmartResource is subclass of Class
It has SmartMessage as ancestor
Range: enumeral types
<message title=“simple”></message>

 or <message>
 <title>simple</title>
 </message>

 Metadata analysis
 (Figure 12). This stage includes

hema, etc.), analysis of existing

analysis of existing methods of

transformation (XSLT, production rules, etc.), analysis of capabilities and restrictions

(possibilities of formalization, querying, etc.).

 Relational theory
SQL97 standard
Relational algebra (selection, projection,

Further, one must go on wi

stage, the existing approache

the source/target resources h

XML to RDF, etc.), possibil

of extension during evolutio

compatibility, etc.).

A

C

A B

The next step of the adaptat

14). This stage requires effo

types matching), representat

manual, semiautomatic and a

The mechanism of transform

possible approaches (tools, A

(time for development, price

of the chosen approach (su
Analysis
join)
transformable to object model, XML model

Figure 12 -

th a stage of

s to transform

ave to be def

ity for furthe

n), a role of

nalysis -
-
-
-

Figure 13

ion process is

rts for determ

ion format fo

utomatic mat

ation require

PIs, Services

 of the produc

pported platf
 Analysis of standard
 Model transformation (see Figure 13). At this

ation have to be analyzed (XSLT, piping, etc.),

ined (XHTML to XML, Oracle DBMS to XML,

r extension must be taken into account (e.g. cost

metadata is also important (schema integration,

A can be transformed to C with XSLT;
A is the XML file, C is an RDF file;
A’s schema is dynamic;
Schemas are interoperable.

n
- Model of transformatio
 concerned with data mapping rules (see Figure

ining a protocol of transformation (elements and

r the rules (Ontology, XSLT, etc.), percentage of

ching actions.

s the following analyses to be done: analysis of

, etc.), estimation of cost for particular approach

t, etc.), study of interoperability and extensibility

orms, extensible API, etc.). For transformation,

 12

1. Entity “Person” corresponds to tag <person>;
2. Entity “Salary” corresponds to property “Income”;
3. …

Rules
engine

Figure 15 - Data mapping rules

existing tools can be used or if reasonable these tools can be developed from scratch. The

most popular APIs used in transformation of XML are XSLT, SAX and DOM. In case of

RscDF the functionality for implementation must be defined: either it will be XML-to-

RDF transformation, or more.

Figure 14 - Mechanism of transformation

9.2 Elaboration of Semantic Adaptation approach

One of the approaches to adaptation is a serialization of the RscDF format into

intermediate well standardized and elaborated format. As the basis, it’s intended to use

XML format for this approach. For this purpose, a unified mechanism of RscDF

transformation into the XML format and vice versa has to be designed and developed (see

Figure 16). This mechanism will allow mapping schemas and data from RscDF to XML

(Figure 17).

There are some projects, which have elaborated pilot methods of transformation RDF to

XML [1, 2]. Since RSCDF is enhanced subset of RDF it’s possible to adopt these methods.

The transformation is carried out by either by replacing XPATH expressions or by the set

of XSLT style sheets (see Figure 17).

 13

Database

XML

IDE

HTML

XML
RscDF format in

GUN

RSCDF transformation
into particular standard

 Figure 16 - Unified RscDF-to-XML transformation

RDF model and

XPath expressions

RDF context XML context

Set of XSLT style

sheets

Figure 17 n

Once the mechanism of tran

been designed it’s possible

18). Choosing the XML form

Other
formats

RDBMS

Figure
- XPath and XSLT in RDF-to-XML transformatio
sformation from RSCDF to XML and XML to RSCDF has

to use standard approaches for future transformation (Figure

at as the start point will allow unifying process of adaptation.

XML

XML

XHTML

 18 - Transformation of XML to other formats

 14

From existing tools that provide transformation of XML to other formats, Altova

MapForce can be mentioned [3]. This commercial tool allows XML to XML

transformation based upon two XML schemas (Figure 19). It’s also might be necessary to

perform some processing functions to pipe data from source to target.

Figure 19 e

MapForce allows mapping bet

process of mapping starts from

engineer manually fulfils matc

mapping it might be necessary t

- XML-to-XML transformation in MapForc
ween XML and Relational database, too (Figure 20). The

 the loading of database scheme and XML schema. Then

hing between XML elements and database entities. While

o use processing functions.

 15

Figure 20 - e

9.3 Ontology-to-ontology

When we deal with RDF-to-R

ontology-to-ontology mapping

common vocabulary (World

(Figure 21). However, incomp

both directions.

O3

O1

Figure
 XML-to-Database transformation in MapForc
 mapping

DF transformation, we inevitably face with the challenge of

 and transformation. If all domain descriptions refer to a

ontology – ideal case), mapping can be done explicitly

leteness of one ontology may cause inability to transform in

World Ontology

O2

n

 21 n

 16
transformatio

Correspondence to
the World ontology
On

- Ontology-to-ontology transformatio

In case of Peer-to-Peer ontology mapping, one ontology is mapped to other manually or in

semi-automatic way (Figure 22).

O2 O1

Figure 22 - Peer-to-Peer ontology mapping

Construction of mapping rules may meet the following problems:

 Different expert vision of problem domain;

 Models may be inconsistent conceptually;

 Paradigms the models are based on may cause hardly convertible schemas.

9.4 Model-to-model mapping

To develop unified adapter to a particular standard, the following formats and structures of

data must be analyzed:

• Flat files (ASCII text files);

• Tables (Excel);

• Trees and taxonomies (xml, ontology-files);

• Marked up structures (HTML);

• Relational model (RDBMS);

• Object model (Classes and objects);

• Compound structure (any mixed specific structures).

The generic model mapping scheme is shown in Figure 23:

Model mapping tool
(schema mapping)

Data transformation
(reusable part)

Model mapping tool
(schema mapping)

Data transformation
(reusable part)

...

Model mapping tool
(schema mapping)

Data transformation
(reusable part)

Model A

Data
Model B

Model N

... Target
model

Figure 23 - a
 Generic model mapping schem
 17

For a concrete case the model mapping scheme will look like the following (Figure 24):

RscDF
schema

Model mapping tool
(schema mapping)

Doc transformation
(reusable part)

Model mapping tool
(schema mapping)

Data transformation
(reusable part)

...

Model mapping tool
(schema mapping)

Doc transformation
(reusable part)

XML
Schema

XML doc

…

...

DB
content

RscDF
doc

DB model

Figure 25 - Model mapping schema

Finally, the document transformation scheme is the following (Figure 25):

RscDF 2 XML
Schema mapping tool

Data transformation
(reusable part)

Model mapping tool
(schema mapping)

Data transformation
(reusable part)

...

XML schema to DB
model mapping tool

Doc transformation
(reusable part)

XML doc

…

...

DB
content

RscDF
doc

Figure 24 – Document transformation scheme

As for the mapping tools that can be used in the transformation process, the following

existing ones are available:

• RDBMS 2 XML Schema;

• XML 2 XML (XSLT);

• RDF 2 XML;

• etc.

 18

If to talk about automation of the adaptation, it is evident that fully automated semantic

adaptation cannot be implemented. The question is what level of automation is possible

and how to achieve it.

Given that unambiguous semantic description resources become machine processable,

hence automated adapter composition is possible. However, unambiguous semantic

description requires human to map the meaning of concepts and relations unless there is

already existent common ontology. The tools will be needed to simplify the process of

mapping for human. Tools will use faceted classification, adapted for each particular

domain in order to make easily accessible the most relevant concepts.

The following cases are essential in a context of automated semantic adaptation:

• case1: Explicit mapping (human assisted);

• case2: Shared ontology (both resources use same ontology or at least are mapped to

it);

• case3: Shared ontology lookup & composition (may be wrapped as a service or

implemented as an embedded functionality).

9.5 Adapter as software design

The software design of the adapter will require Abstract design of Adapter Backbone using

structural and behavioral patterns and Adapter concrete implementation using integration

patterns (see Figure 26).

In order to simplify the complexity of Adapter, the following strategy has to be utilized:

• Use model based software development techniques:

o Pre-defined software abstractions based on integration and design

patterns provide a robust framework for developing adapters

• Partitioning logic of adaptation to multiple adapters even for one resource:

o Integration function (Connection, Parsing, Transformation, etc.)

o Support function (System Logging, Error handling, Audit Trail, etc.)

• Reuse all external transformers instead of developing transformer functionality in

each adapter.

 19

Adapter

Parser

Network

Connection

Agent

Adapter Concrete
Implementation using
 integration patterns

Parser

Network

Connection

Agent

Transformator

Parser

Network
Connection

Resource

Adapter

Adapter Backbone
Abstract Design

using structural and
behavioral patterns

Resource

Network
Connection

Parser

Transformator

Figure 26 - Adapter design scheme

This part of design (software) includes techniques and methods for software development

of components and modules. Different approaches exist for reusable and well structured

software design - such as structural patterns, design patterns, etc. Pattern approach allows

elaborating well-thought abstract adapter design with further reuse of it for concrete

adapter implementation.

For clearer understanding, Data Piping Pattern can be considered as an example of the

structural pattern. This pattern fits well to application-to-application adaptation. Each

component of this pattern is responsible for a particular function (see Figure 27).

Data Piping Pattern

Data source
Data

extractor
Data

transformer
Data

loader Data target

Figure 27 - Sample structural pattern

 20

Data extractor is responsible for getting/extracting data from a source resource. Since we

have heterogeneous resources with diversity of access methods (RS 232, Bluetooth,

WLAN, LAN, etc), formats of data and APIs, each Data Extractor module must be

developed for particular source of data.

After data extraction it is piped to the Data Transformer module. Data Transformer

performs transformation involving metadata of formats (schemas) and data transformation

rules. Format’s metadata (schema) with data transformation rules (mapping) together

constitute semantic adaptation.

After transformation process, data are ready to be stored in appropriate place. Data Loader

performs this function.

 21

References
[1] XR homepage: XML-to-RDF transformation format, http://w3future.com/xr/, last

accessed 19th Oct 2004.

[2] E. Miller, C.M. Sperberg-McQueen: “On mapping from colloquial XML to RDF using

XSLT”, Proc. of W3C Extreme Markup Languages 2004, August 3, 2004; Montreal, CA.

[3] MapForce homepage. http://www.altova.com/products_mapforce.html.

 22

http://w3future.com/xr/
http://www.w3.org/People/cmsmcq/
http://www.altova.com/products_mapforce.html

	Introduction
	Tasks and Goals
	Background
	Framework for semantic adaptation of resources
	Data integration
	Software integration

	Description of concepts
	SmartResource
	Real World Resource
	Web Service
	Human
	Adapter
	Agent
	Global Understanding eNvironment
	Adaptation
	General Adaptation
	Place of SmartResource
	RDF
	RscDF
	Ontology
	GUN Adapter

	Ontology design
	Scenarios of Interaction
	SmartResource internal scenarios
	Agent to RWR
	Agent to Adapter
	Adapter to RWR
	Agent to RWR communication

	RWR to Agent
	RWR to Adapter
	Adapter to Agent
	RWR to Agent communication

	SmartResource internal interoperation

	Adapter software component design for semantic adaptation
	Adapter – abstract realization
	Adapter Class Diagram
	Adapter creation
	Protocol Class Diagram
	Agent to RWR communication
	Abstract view on semantic adaptation process

	Adapter with concrete realization
	Concrete Adapter Class Diagram
	Concrete Adapter creation
	Concrete Protocol Class Diagram
	Agent to Rwr communication with concrete realization
	Semantic adaptation with concrete realization
	Partitioned logic of semantic adaptation
	Run-time concrete realization loading

	Adaptation of Human, Device and Web Service using GAF
	Human adaptation
	Device adaptation
	Web Service adaptation
	W3C stack

	References
	Introduction
	Approach to General Adaptation Framework
	Data models
	Processes in General Adaptation Framework

	Semantic Adaptation
	Semantic Adaptation Example
	Elaboration of Semantic Adaptation approach
	Ontology-to-ontology mapping
	Model-to-model mapping
	Adapter as software design

	References

