Using the **Semantic Web** in Ubiquitous and Mobile Computing

Ora Lassila

Research Fellow, Software & Applications Laboratory, Nokia Research Center
Elected Member of Advisory Board, World Wide Web Consortium (W3C)

August 2005

Game Plan

1. Semantic Web (the way I see it...)
2. Issues in Mobile Computing
3. Issues in Ubiquitous Computing
4. Semantic Web to the Rescue?
5. Conclusions (if any)

WARNING! Contains Personal Opinions
Semantic Web: Why I Like It
(a personal view)

Some Background

- Web (content) was built for humans
 - human interpretation is needed to accomplish tasks on the Web
 - automation is difficult (esp. automating unforeseen situations)
 - we need “machine-friendly” content
 - information w/ accessible formal semantics
 - allow machines to reason about information

- Motivation & Drivers
 - origins are in metadata
 - initial goal: Enabling automation
 - short term goal: Interoperability
 - long term goal: Make computers work **on our behalf**
 - (instead of using them like tools)
 - remove humans from the loop
Semantics via Sharing

• Controlled vocabularies
 • better interoperability if same terms are always used to denote the same thing
 • e.g., instead of arbitrary keywords, choose from a list

• What is an “ontology”?
 1. a controlled vocabulary
 2. a concept taxonomy
 3. other relations between concepts
• definition: “A specification of conceptualization” (Gruber)

• Library scientists are good with this
• Dewey Decimal System is an ontology

Stepping Towards the Semantic Web

- Encoding characters: Unicode
- Encoding structure: XML
- Sharing semantics: RDF
- Simple taxonomies: RDF Schema
- Rich ontologies: OWL
- Rules & Queries
- ... more coming...

Semantic Web

• Semantic Web is built in a layered manner
 • not everybody needs all the layers
 • Some dangers looming (e.g., “two towers”)
What Should We Do Next?

• Now forget that we are talking about the Web...

• Modern PC applications are essentially just repositories for information (typically) in proprietary formats
 - combining or sharing information across application boundaries is impossible or difficult at best
 - any two applications can be engineered to enable information exchange, but we cannot anticipate all possible “pairings”

• In addition to the explicitly represented information, these systems hold a lot of implicit information
 - implicit information is largely inaccessible to current applications

Implicit → Explicit

• e.g., your calendar may indicate that you have a flight reservation from Boston to Helsinki
 - implying that if you take the flight, you will then be in Helsinki
 - this information may be more useful (say, for meeting planning)

• Use of reasoning (= logical inference) will allow us to access the implicit information

• What do we need?
 - ubiquitous reasoning services
 - ontologies for all kinds of “common” concepts & information, e.g.
 - PIM data
 - geographical and organizational concepts (and instances)
 - classification of information (e.g., photo content)
Mobile Web Access Today

- Web access on mobile devices is available today
- Some **technical limitations** exist
 - network (bandwidth, latency)
 - display (typically small)
 - input (often no full keyboard)
- Content is designed for “standard devices”
 - (= PCs: high bandwidth, large display)
 - most (commercial) content is **rendering-oriented**
Some Issues with Mobile Web Access

- We can overcome the technical limitations, but the real limitations are of different nature...
- Mobile devices are used in “unusual” situations
 - when laptops, etc., are not viable (e.g., in the car)
 - typically, when paying attention to something else
 - mobile users are attention-constrained
 - consequently, browsing might not be the ideal paradigm for information access
- What do we need?
 - information/content that’s not rendering-oriented
 - more automation (now, humans essentially do all the work)

Some Things That Would Help

- Policies (prescriptive representations on how to act in a particular situation)
 - can control data access and usage (security & privacy)
 - support autonomous behavior
- Policy-awareness = ability to represent and enforce policies
- Context (information about “current situation”)
 - can limit search
 - can limit choices in planning
 - can guide optimization
- Determining context benefits from policy-awareness
Ubiquitous Computing (1)

• UbiComp is the ultimate interoperability nightmare!
 • instead of occasionally connecting a handful of devices, dynamically connect/disconnect/reconnect possibly hundreds of devices

• Traditional approach to interoperability: standardization
 • anticipate everything about the future
 • and a priori agree on how to act
 • (or: force all interactions to a restricted set of possibilities)

• What about unanticipated situations?
 • how do you agree dynamically on how to behave in a situation that wasn’t covered by a standard?
 ⇒ not “future-proof”

Ubiquitous Computing (2)

• Connections with public and/or untrusted devices
 • cf. policy-awareness

• We may need to “borrow” functionality from other devices
 • this implies that we need to be able to represent and reason about contracts, payments, etc.
 • (alternatively: “digital communism”)

• The UbiComp vision is largely contingent on
 • future-proofing
 • getting unanticipated “encounters” of devices to work
Semantic Web to the Rescue?

- Semantic Web improves interoperability
 - e.g., via the use of reasoning

- Information, in more “raw” form, with semantics, can be used in many different ways
 - not tied to specific rendering, specific device, specific browser, etc.
 - context-awareness can help

- Semantic Web techniques (and other ontological) techniques can also be used for implementing
 - contexts & context-awareness [Lassila & Khushraj 2005]
 - policy-awareness [Kagal 2004]

“Semantic Web Services” to the Rescue?

- Semantic Web technologies can be used for making content more “understandable” to automated systems

- When this idea is applied to Web Services
 - automatic discovery, composition and invocation are enabled
 - let’s not forget the “Tower of Babble” (from Genesis 11:1-9)

- If we can infer what data and services are about, many things become possible, e.g.
 - dynamic, context-dependent generation of user interfaces
 - substitution of “equivalent” services

- Services may be a good abstraction of all functionality
 - (including physical functions)
Conclusions

What Did We Learn?

• Semantic Web (representation + reasoning)
 • helps with interoperability (of data)
 • can be used in making implicit information explicit
 • is a step towards making computers do more on our behalf

• Ubiquitous Computing
 • is an interoperability nightmare
 • will benefit from uniform representation for functionality

• Mobile Information Access
 • will benefit from information that does not presuppose presentation
 • can exploit contextual information

• We need a rich representation of policies
 • (and a framework for their enforcement)
And Finally...

- Many problems in mobile and ubiquitous computing are (ultimately) problems of representation

Questions? Comments? Time to wake up!

- some additional thoughts: http://www.lassila.org/blog/

- thanks to my colleagues Deepali Khushraj, Mark Adler and Heli Nyholm